This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/editors/transform/transform.c

9778 lines
266 KiB
C
Raw Normal View History

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
2010-02-12 13:34:04 +00:00
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*/
/** \file
* \ingroup edtransform
2011-02-27 20:29:51 +00:00
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <float.h>
#include "MEM_guardedalloc.h"
#include "DNA_anim_types.h"
#include "DNA_armature_types.h"
#include "DNA_constraint_types.h"
#include "DNA_mask_types.h"
2018-05-25 22:24:24 +05:30
#include "DNA_mesh_types.h"
Camera tracking integration =========================== Commiting camera tracking integration gsoc project into trunk. This commit includes: - Bundled version of libmv library (with some changes against official repo, re-sync with libmv repo a bit later) - New datatype ID called MovieClip which is optimized to work with movie clips (both of movie files and image sequences) and doing camera/motion tracking operations. - New editor called Clip Editor which is currently used for motion/tracking stuff only, but which can be easily extended to work with masks too. This editor supports: * Loading movie files/image sequences * Build proxies with different size for loaded movie clip, also supports building undistorted proxies to increase speed of playback in undistorted mode. * Manual lens distortion mode calibration using grid and grease pencil * Supervised 2D tracking using two different algorithms KLT and SAD. * Basic algorithm for feature detection * Camera motion solving. scene orientation - New constraints to "link" scene objects with solved motions from clip: * Follow Track (make object follow 2D motion of track with given name or parent object to reconstructed 3D position of track) * Camera Solver to make camera moving in the same way as reconstructed camera This commit NOT includes changes from tomato branch: - New nodes (they'll be commited as separated patch) - Automatic image offset guessing for image input node and image editor (need to do more tests and gather more feedback) - Code cleanup in libmv-capi. It's not so critical cleanup, just increasing readability and understanadability of code. Better to make this chaneg when Keir will finish his current patch. More details about this project can be found on this page: http://wiki.blender.org/index.php/User:Nazg-gul/GSoC-2011 Further development of small features would be done in trunk, bigger/experimental features would first be implemented in tomato branch.
2011-11-07 12:55:18 +00:00
#include "DNA_movieclip_types.h"
#include "DNA_scene_types.h" /* PET modes */
#include "DNA_workspace_types.h"
#include "DNA_gpencil_types.h"
#include "BLI_alloca.h"
#include "BLI_utildefines.h"
#include "BLI_math.h"
#include "BLI_rect.h"
#include "BLI_listbase.h"
#include "BLI_string.h"
#include "BLI_ghash.h"
#include "BLI_utildefines_stack.h"
#include "BLI_memarena.h"
#include "BKE_nla.h"
2015-04-29 19:39:58 +10:00
#include "BKE_editmesh.h"
2013-04-16 05:23:34 +00:00
#include "BKE_editmesh_bvh.h"
#include "BKE_context.h"
#include "BKE_constraint.h"
#include "BKE_particle.h"
#include "BKE_unit.h"
#include "BKE_scene.h"
#include "BKE_mask.h"
2018-05-25 22:24:24 +05:30
#include "BKE_mesh.h"
#include "BKE_report.h"
#include "BKE_workspace.h"
#include "DEG_depsgraph.h"
#include "GPU_immediate.h"
#include "GPU_immediate_util.h"
#include "GPU_matrix.h"
#include "GPU_state.h"
#include "ED_image.h"
#include "ED_keyframing.h"
#include "ED_screen.h"
#include "ED_space_api.h"
#include "ED_markers.h"
#include "ED_view3d.h"
#include "ED_mesh.h"
Camera tracking integration =========================== Commiting camera tracking integration gsoc project into trunk. This commit includes: - Bundled version of libmv library (with some changes against official repo, re-sync with libmv repo a bit later) - New datatype ID called MovieClip which is optimized to work with movie clips (both of movie files and image sequences) and doing camera/motion tracking operations. - New editor called Clip Editor which is currently used for motion/tracking stuff only, but which can be easily extended to work with masks too. This editor supports: * Loading movie files/image sequences * Build proxies with different size for loaded movie clip, also supports building undistorted proxies to increase speed of playback in undistorted mode. * Manual lens distortion mode calibration using grid and grease pencil * Supervised 2D tracking using two different algorithms KLT and SAD. * Basic algorithm for feature detection * Camera motion solving. scene orientation - New constraints to "link" scene objects with solved motions from clip: * Follow Track (make object follow 2D motion of track with given name or parent object to reconstructed 3D position of track) * Camera Solver to make camera moving in the same way as reconstructed camera This commit NOT includes changes from tomato branch: - New nodes (they'll be commited as separated patch) - Automatic image offset guessing for image input node and image editor (need to do more tests and gather more feedback) - Code cleanup in libmv-capi. It's not so critical cleanup, just increasing readability and understanadability of code. Better to make this chaneg when Keir will finish his current patch. More details about this project can be found on this page: http://wiki.blender.org/index.php/User:Nazg-gul/GSoC-2011 Further development of small features would be done in trunk, bigger/experimental features would first be implemented in tomato branch.
2011-11-07 12:55:18 +00:00
#include "ED_clip.h"
#include "ED_node.h"
#include "ED_gpencil.h"
#include "WM_types.h"
#include "WM_api.h"
#include "UI_view2d.h"
#include "UI_interface.h"
#include "UI_interface_icons.h"
#include "UI_resources.h"
#include "RNA_access.h"
2018-05-25 22:24:24 +05:30
#include "RNA_define.h"
#include "BLF_api.h"
#include "BLT_translation.h"
#include "transform.h"
2019-04-17 08:44:58 +02:00
/* Disabling, since when you type you know what you are doing,
* and being able to set it to zero is handy. */
// #define USE_NUM_NO_ZERO
static void drawTransformApply(const struct bContext *C, ARegion *ar, void *arg);
static void doEdgeSlide(TransInfo *t, float perc);
static void doVertSlide(TransInfo *t, float perc);
2015-05-07 20:10:05 +10:00
static void drawEdgeSlide(TransInfo *t);
static void drawVertSlide(TransInfo *t);
static void postInputRotation(TransInfo *t, float values[3]);
static void ElementRotation(
TransInfo *t, TransDataContainer *tc, TransData *td, float mat[3][3], const short around);
static void initSnapSpatial(TransInfo *t, float r_snap[3]);
2018-05-25 22:24:24 +05:30
static void storeCustomLNorValue(TransDataContainer *t, BMesh *bm);
/* Transform Callbacks */
2013-11-20 12:14:10 +11:00
static void initBend(TransInfo *t);
static eRedrawFlag handleEventBend(TransInfo *t, const struct wmEvent *event);
static void Bend(TransInfo *t, const int mval[2]);
static void initShear(TransInfo *t);
static eRedrawFlag handleEventShear(TransInfo *t, const struct wmEvent *event);
static void applyShear(TransInfo *t, const int mval[2]);
static void initResize(TransInfo *t);
static void applyResize(TransInfo *t, const int mval[2]);
static void initSkinResize(TransInfo *t);
static void applySkinResize(TransInfo *t, const int mval[2]);
static void initTranslation(TransInfo *t);
static void applyTranslation(TransInfo *t, const int mval[2]);
static void initToSphere(TransInfo *t);
static void applyToSphere(TransInfo *t, const int mval[2]);
static void initRotation(TransInfo *t);
static void applyRotation(TransInfo *t, const int mval[2]);
2018-05-25 22:24:24 +05:30
static void initNormalRotation(TransInfo *t);
static void applyNormalRotation(TransInfo *t, const int mval[2]);
static void initShrinkFatten(TransInfo *t);
static void applyShrinkFatten(TransInfo *t, const int mval[2]);
static void initTilt(TransInfo *t);
static void applyTilt(TransInfo *t, const int mval[2]);
static void initCurveShrinkFatten(TransInfo *t);
static void applyCurveShrinkFatten(TransInfo *t, const int mval[2]);
static void initMaskShrinkFatten(TransInfo *t);
static void applyMaskShrinkFatten(TransInfo *t, const int mval[2]);
static void initGPShrinkFatten(TransInfo *t);
static void applyGPShrinkFatten(TransInfo *t, const int mval[2]);
static void initTrackball(TransInfo *t);
static void applyTrackball(TransInfo *t, const int mval[2]);
static void initPushPull(TransInfo *t);
static void applyPushPull(TransInfo *t, const int mval[2]);
static void initBevelWeight(TransInfo *t);
static void applyBevelWeight(TransInfo *t, const int mval[2]);
static void initCrease(TransInfo *t);
static void applyCrease(TransInfo *t, const int mval[2]);
static void initBoneSize(TransInfo *t);
static void applyBoneSize(TransInfo *t, const int mval[2]);
static void initBoneEnvelope(TransInfo *t);
static void applyBoneEnvelope(TransInfo *t, const int mval[2]);
static void initBoneRoll(TransInfo *t);
static void applyBoneRoll(TransInfo *t, const int mval[2]);
static void initEdgeSlide_ex(
TransInfo *t, bool use_double_side, bool use_even, bool flipped, bool use_clamp);
static void initEdgeSlide(TransInfo *t);
static eRedrawFlag handleEventEdgeSlide(TransInfo *t, const struct wmEvent *event);
static void applyEdgeSlide(TransInfo *t, const int mval[2]);
static void initVertSlide_ex(TransInfo *t, bool use_even, bool flipped, bool use_clamp);
static void initVertSlide(TransInfo *t);
static eRedrawFlag handleEventVertSlide(TransInfo *t, const struct wmEvent *event);
static void applyVertSlide(TransInfo *t, const int mval[2]);
static void initTimeTranslate(TransInfo *t);
static void applyTimeTranslate(TransInfo *t, const int mval[2]);
static void initTimeSlide(TransInfo *t);
static void applyTimeSlide(TransInfo *t, const int mval[2]);
static void initTimeScale(TransInfo *t);
static void applyTimeScale(TransInfo *t, const int mval[2]);
static void initBakeTime(TransInfo *t);
static void applyBakeTime(TransInfo *t, const int mval[2]);
static void initMirror(TransInfo *t);
static void applyMirror(TransInfo *t, const int mval[2]);
static void initAlign(TransInfo *t);
static void applyAlign(TransInfo *t, const int mval[2]);
static void initSeqSlide(TransInfo *t);
static void applySeqSlide(TransInfo *t, const int mval[2]);
static void initGPOpacity(TransInfo *t);
static void applyGPOpacity(TransInfo *t, const int mval[2]);
/* end transform callbacks */
static bool transdata_check_local_center(TransInfo *t, short around)
{
return ((around == V3D_AROUND_LOCAL_ORIGINS) &&
((t->flag & (T_OBJECT | T_POSE)) ||
/* implicit: (t->flag & T_EDIT) */
(ELEM(t->obedit_type, OB_MESH, OB_CURVE, OB_MBALL, OB_ARMATURE, OB_GPENCIL)) ||
(t->spacetype == SPACE_GRAPH) ||
(t->options & (CTX_MOVIECLIP | CTX_MASK | CTX_PAINT_CURVE))));
}
bool transdata_check_local_islands(TransInfo *t, short around)
{
return ((around == V3D_AROUND_LOCAL_ORIGINS) && ((ELEM(t->obedit_type, OB_MESH))));
}
2018-09-27 15:49:59 +02:00
/* ************************** SPACE DEPENDENT CODE **************************** */
void setTransformViewMatrices(TransInfo *t)
{
if (t->spacetype == SPACE_VIEW3D && t->ar && t->ar->regiontype == RGN_TYPE_WINDOW) {
RegionView3D *rv3d = t->ar->regiondata;
copy_m4_m4(t->viewmat, rv3d->viewmat);
copy_m4_m4(t->viewinv, rv3d->viewinv);
copy_m4_m4(t->persmat, rv3d->persmat);
copy_m4_m4(t->persinv, rv3d->persinv);
t->persp = rv3d->persp;
}
else {
unit_m4(t->viewmat);
unit_m4(t->viewinv);
unit_m4(t->persmat);
unit_m4(t->persinv);
t->persp = RV3D_ORTHO;
}
calculateCenter2D(t);
calculateCenterLocal(t, t->center_global);
}
void setTransformViewAspect(TransInfo *t, float r_aspect[3])
{
copy_v3_fl(r_aspect, 1.0f);
if (t->spacetype == SPACE_IMAGE) {
SpaceImage *sima = t->sa->spacedata.first;
if (t->options & CTX_MASK) {
ED_space_image_get_aspect(sima, &r_aspect[0], &r_aspect[1]);
}
else if (t->options & CTX_PAINT_CURVE) {
/* pass */
}
else {
ED_space_image_get_uv_aspect(sima, &r_aspect[0], &r_aspect[1]);
}
}
else if (t->spacetype == SPACE_CLIP) {
SpaceClip *sclip = t->sa->spacedata.first;
if (t->options & CTX_MOVIECLIP) {
ED_space_clip_get_aspect_dimension_aware(sclip, &r_aspect[0], &r_aspect[1]);
}
else {
ED_space_clip_get_aspect(sclip, &r_aspect[0], &r_aspect[1]);
}
}
else if (t->spacetype == SPACE_GRAPH) {
/* depemds on context of usage */
}
}
static void convertViewVec2D(View2D *v2d, float r_vec[3], int dx, int dy)
{
float divx = BLI_rcti_size_x(&v2d->mask);
float divy = BLI_rcti_size_y(&v2d->mask);
r_vec[0] = BLI_rctf_size_x(&v2d->cur) * dx / divx;
r_vec[1] = BLI_rctf_size_y(&v2d->cur) * dy / divy;
r_vec[2] = 0.0f;
}
static void convertViewVec2D_mask(View2D *v2d, float r_vec[3], int dx, int dy)
{
float divx = BLI_rcti_size_x(&v2d->mask);
float divy = BLI_rcti_size_y(&v2d->mask);
float mulx = BLI_rctf_size_x(&v2d->cur);
float muly = BLI_rctf_size_y(&v2d->cur);
/* difference with convertViewVec2D */
/* clamp w/h, mask only */
if (mulx / divx < muly / divy) {
divy = divx;
muly = mulx;
}
else {
divx = divy;
mulx = muly;
}
/* end difference */
r_vec[0] = mulx * dx / divx;
r_vec[1] = muly * dy / divy;
r_vec[2] = 0.0f;
}
void convertViewVec(TransInfo *t, float r_vec[3], double dx, double dy)
{
if ((t->spacetype == SPACE_VIEW3D) && (t->ar->regiontype == RGN_TYPE_WINDOW)) {
if (t->options & CTX_PAINT_CURVE) {
r_vec[0] = dx;
r_vec[1] = dy;
}
else {
const float mval_f[2] = {(float)dx, (float)dy};
ED_view3d_win_to_delta(t->ar, mval_f, r_vec, t->zfac);
}
}
else if (t->spacetype == SPACE_IMAGE) {
if (t->options & CTX_MASK) {
convertViewVec2D_mask(t->view, r_vec, dx, dy);
}
else if (t->options & CTX_PAINT_CURVE) {
r_vec[0] = dx;
r_vec[1] = dy;
}
else {
convertViewVec2D(t->view, r_vec, dx, dy);
}
r_vec[0] *= t->aspect[0];
r_vec[1] *= t->aspect[1];
}
else if (ELEM(t->spacetype, SPACE_GRAPH, SPACE_NLA)) {
convertViewVec2D(t->view, r_vec, dx, dy);
}
else if (ELEM(t->spacetype, SPACE_NODE, SPACE_SEQ)) {
convertViewVec2D(&t->ar->v2d, r_vec, dx, dy);
}
else if (t->spacetype == SPACE_CLIP) {
if (t->options & CTX_MASK) {
convertViewVec2D_mask(t->view, r_vec, dx, dy);
}
else {
convertViewVec2D(t->view, r_vec, dx, dy);
}
r_vec[0] *= t->aspect[0];
r_vec[1] *= t->aspect[1];
}
else {
printf("%s: called in an invalid context\n", __func__);
zero_v3(r_vec);
}
}
void projectIntViewEx(TransInfo *t, const float vec[3], int adr[2], const eV3DProjTest flag)
{
if (t->spacetype == SPACE_VIEW3D) {
if (t->ar->regiontype == RGN_TYPE_WINDOW) {
if (ED_view3d_project_int_global(t->ar, vec, adr, flag) != V3D_PROJ_RET_OK) {
/* this is what was done in 2.64, perhaps we can be smarter? */
adr[0] = (int)2140000000.0f;
adr[1] = (int)2140000000.0f;
}
}
}
else if (t->spacetype == SPACE_IMAGE) {
SpaceImage *sima = t->sa->spacedata.first;
if (t->options & CTX_MASK) {
float v[2];
v[0] = vec[0] / t->aspect[0];
v[1] = vec[1] / t->aspect[1];
BKE_mask_coord_to_image(sima->image, &sima->iuser, v, v);
ED_image_point_pos__reverse(sima, t->ar, v, v);
adr[0] = v[0];
adr[1] = v[1];
}
else if (t->options & CTX_PAINT_CURVE) {
adr[0] = vec[0];
adr[1] = vec[1];
}
else {
float v[2];
v[0] = vec[0] / t->aspect[0];
v[1] = vec[1] / t->aspect[1];
UI_view2d_view_to_region(t->view, v[0], v[1], &adr[0], &adr[1]);
}
}
else if (t->spacetype == SPACE_ACTION) {
int out[2] = {0, 0};
#if 0
SpaceAction *sact = t->sa->spacedata.first;
if (sact->flag & SACTION_DRAWTIME) {
//vec[0] = vec[0]/((t->scene->r.frs_sec / t->scene->r.frs_sec_base));
/* same as below */
UI_view2d_view_to_region((View2D *)t->view, vec[0], vec[1], &out[0], &out[1]);
}
else
#endif
{
UI_view2d_view_to_region((View2D *)t->view, vec[0], vec[1], &out[0], &out[1]);
}
adr[0] = out[0];
adr[1] = out[1];
}
else if (ELEM(t->spacetype, SPACE_GRAPH, SPACE_NLA)) {
int out[2] = {0, 0};
UI_view2d_view_to_region((View2D *)t->view, vec[0], vec[1], &out[0], &out[1]);
adr[0] = out[0];
adr[1] = out[1];
}
else if (t->spacetype == SPACE_SEQ) { /* XXX not tested yet, but should work */
int out[2] = {0, 0};
UI_view2d_view_to_region((View2D *)t->view, vec[0], vec[1], &out[0], &out[1]);
adr[0] = out[0];
adr[1] = out[1];
}
else if (t->spacetype == SPACE_CLIP) {
SpaceClip *sc = t->sa->spacedata.first;
if (t->options & CTX_MASK) {
MovieClip *clip = ED_space_clip_get_clip(sc);
if (clip) {
float v[2];
v[0] = vec[0] / t->aspect[0];
v[1] = vec[1] / t->aspect[1];
BKE_mask_coord_to_movieclip(sc->clip, &sc->user, v, v);
ED_clip_point_stable_pos__reverse(sc, t->ar, v, v);
adr[0] = v[0];
adr[1] = v[1];
}
else {
adr[0] = 0;
adr[1] = 0;
}
}
else if (t->options & CTX_MOVIECLIP) {
float v[2];
v[0] = vec[0] / t->aspect[0];
v[1] = vec[1] / t->aspect[1];
UI_view2d_view_to_region(t->view, v[0], v[1], &adr[0], &adr[1]);
}
else {
BLI_assert(0);
}
}
else if (t->spacetype == SPACE_NODE) {
UI_view2d_view_to_region((View2D *)t->view, vec[0], vec[1], &adr[0], &adr[1]);
}
}
void projectIntView(TransInfo *t, const float vec[3], int adr[2])
{
projectIntViewEx(t, vec, adr, V3D_PROJ_TEST_NOP);
}
void projectFloatViewEx(TransInfo *t, const float vec[3], float adr[2], const eV3DProjTest flag)
{
switch (t->spacetype) {
case SPACE_VIEW3D: {
if (t->options & CTX_PAINT_CURVE) {
adr[0] = vec[0];
adr[1] = vec[1];
}
else if (t->ar->regiontype == RGN_TYPE_WINDOW) {
/* allow points behind the view [#33643] */
if (ED_view3d_project_float_global(t->ar, vec, adr, flag) != V3D_PROJ_RET_OK) {
/* XXX, 2.64 and prior did this, weak! */
adr[0] = t->ar->winx / 2.0f;
adr[1] = t->ar->winy / 2.0f;
}
return;
}
break;
}
default: {
int a[2] = {0, 0};
projectIntView(t, vec, a);
adr[0] = a[0];
adr[1] = a[1];
break;
}
}
}
void projectFloatView(TransInfo *t, const float vec[3], float adr[2])
{
projectFloatViewEx(t, vec, adr, V3D_PROJ_TEST_NOP);
}
void applyAspectRatio(TransInfo *t, float vec[2])
{
if ((t->spacetype == SPACE_IMAGE) && (t->mode == TFM_TRANSLATION) &&
!(t->options & CTX_PAINT_CURVE)) {
SpaceImage *sima = t->sa->spacedata.first;
if ((sima->flag & SI_COORDFLOATS) == 0) {
int width, height;
ED_space_image_get_size(sima, &width, &height);
vec[0] *= width;
vec[1] *= height;
}
vec[0] /= t->aspect[0];
vec[1] /= t->aspect[1];
}
else if ((t->spacetype == SPACE_CLIP) && (t->mode == TFM_TRANSLATION)) {
if (t->options & (CTX_MOVIECLIP | CTX_MASK)) {
vec[0] /= t->aspect[0];
vec[1] /= t->aspect[1];
}
}
}
void removeAspectRatio(TransInfo *t, float vec[2])
{
if ((t->spacetype == SPACE_IMAGE) && (t->mode == TFM_TRANSLATION)) {
SpaceImage *sima = t->sa->spacedata.first;
if ((sima->flag & SI_COORDFLOATS) == 0) {
int width, height;
ED_space_image_get_size(sima, &width, &height);
vec[0] /= width;
vec[1] /= height;
}
vec[0] *= t->aspect[0];
vec[1] *= t->aspect[1];
}
else if ((t->spacetype == SPACE_CLIP) && (t->mode == TFM_TRANSLATION)) {
if (t->options & (CTX_MOVIECLIP | CTX_MASK)) {
vec[0] *= t->aspect[0];
vec[1] *= t->aspect[1];
}
}
}
static void viewRedrawForce(const bContext *C, TransInfo *t)
{
if (t->options & CTX_GPENCIL_STROKES) {
bGPdata *gpd = ED_gpencil_data_get_active(C);
if (gpd) {
DEG_id_tag_update(&gpd->id, ID_RECALC_GEOMETRY);
}
WM_event_add_notifier(C, NC_GPENCIL | NA_EDITED, NULL);
}
else if (t->spacetype == SPACE_VIEW3D) {
if (t->options & CTX_PAINT_CURVE) {
wmWindow *window = CTX_wm_window(C);
WM_paint_cursor_tag_redraw(window, t->ar);
}
else {
/* Do we need more refined tags? */
2019-04-22 09:19:45 +10:00
if (t->flag & T_POSE) {
WM_event_add_notifier(C, NC_OBJECT | ND_POSE, NULL);
2019-04-22 09:19:45 +10:00
}
else {
WM_event_add_notifier(C, NC_OBJECT | ND_TRANSFORM, NULL);
2019-04-22 09:19:45 +10:00
}
/* For real-time animation record - send notifiers recognized by animation editors */
// XXX: is this notifier a lame duck?
2019-04-22 09:19:45 +10:00
if ((t->animtimer) && IS_AUTOKEY_ON(t->scene)) {
WM_event_add_notifier(C, NC_OBJECT | ND_KEYS, NULL);
2019-04-22 09:19:45 +10:00
}
}
}
else if (t->spacetype == SPACE_ACTION) {
//SpaceAction *saction = (SpaceAction *)t->sa->spacedata.first;
WM_event_add_notifier(C, NC_ANIMATION | ND_KEYFRAME | NA_EDITED, NULL);
}
else if (t->spacetype == SPACE_GRAPH) {
//SpaceGraph *sipo = (SpaceGraph *)t->sa->spacedata.first;
WM_event_add_notifier(C, NC_ANIMATION | ND_KEYFRAME | NA_EDITED, NULL);
}
else if (t->spacetype == SPACE_NLA) {
WM_event_add_notifier(C, NC_ANIMATION | ND_NLA | NA_EDITED, NULL);
}
else if (t->spacetype == SPACE_NODE) {
//ED_area_tag_redraw(t->sa);
WM_event_add_notifier(C, NC_SPACE | ND_SPACE_NODE_VIEW, NULL);
}
else if (t->spacetype == SPACE_SEQ) {
WM_event_add_notifier(C, NC_SCENE | ND_SEQUENCER, NULL);
}
else if (t->spacetype == SPACE_IMAGE) {
if (t->options & CTX_MASK) {
Mask *mask = CTX_data_edit_mask(C);
WM_event_add_notifier(C, NC_MASK | NA_EDITED, mask);
}
else if (t->options & CTX_PAINT_CURVE) {
wmWindow *window = CTX_wm_window(C);
WM_paint_cursor_tag_redraw(window, t->ar);
}
else if (t->flag & T_CURSOR) {
ED_area_tag_redraw(t->sa);
}
else {
// XXX how to deal with lock?
SpaceImage *sima = (SpaceImage *)t->sa->spacedata.first;
if (sima->lock) {
WM_event_add_notifier(C, NC_GEOM | ND_DATA, OBEDIT_FROM_VIEW_LAYER(t->view_layer)->data);
}
else {
ED_area_tag_redraw(t->sa);
}
}
}
else if (t->spacetype == SPACE_CLIP) {
SpaceClip *sc = (SpaceClip *)t->sa->spacedata.first;
if (ED_space_clip_check_show_trackedit(sc)) {
MovieClip *clip = ED_space_clip_get_clip(sc);
/* objects could be parented to tracking data, so send this for viewport refresh */
WM_event_add_notifier(C, NC_OBJECT | ND_TRANSFORM, NULL);
WM_event_add_notifier(C, NC_MOVIECLIP | NA_EDITED, clip);
}
else if (ED_space_clip_check_show_maskedit(sc)) {
Mask *mask = CTX_data_edit_mask(C);
WM_event_add_notifier(C, NC_MASK | NA_EDITED, mask);
}
}
}
static void viewRedrawPost(bContext *C, TransInfo *t)
{
ED_area_status_text(t->sa, NULL);
if (t->spacetype == SPACE_VIEW3D) {
/* if autokeying is enabled, send notifiers that keyframes were added */
2019-04-22 09:19:45 +10:00
if (IS_AUTOKEY_ON(t->scene)) {
WM_main_add_notifier(NC_ANIMATION | ND_KEYFRAME | NA_EDITED, NULL);
2019-04-22 09:19:45 +10:00
}
/* redraw UV editor */
if (ELEM(t->mode, TFM_VERT_SLIDE, TFM_EDGE_SLIDE) &&
(t->settings->uvcalc_flag & UVCALC_TRANSFORM_CORRECT)) {
WM_event_add_notifier(C, NC_GEOM | ND_DATA, NULL);
}
/* XXX temp, first hack to get auto-render in compositor work (ton) */
WM_event_add_notifier(C, NC_SCENE | ND_TRANSFORM_DONE, CTX_data_scene(C));
}
#if 0 // TRANSFORM_FIX_ME
if (t->spacetype == SPACE_VIEW3D) {
allqueue(REDRAWBUTSOBJECT, 0);
allqueue(REDRAWVIEW3D, 0);
}
else if (t->spacetype == SPACE_IMAGE) {
allqueue(REDRAWIMAGE, 0);
allqueue(REDRAWVIEW3D, 0);
}
else if (ELEM(t->spacetype, SPACE_ACTION, SPACE_NLA, SPACE_GRAPH)) {
allqueue(REDRAWVIEW3D, 0);
allqueue(REDRAWACTION, 0);
allqueue(REDRAWNLA, 0);
allqueue(REDRAWIPO, 0);
allqueue(REDRAWTIME, 0);
allqueue(REDRAWBUTSOBJECT, 0);
}
scrarea_queue_headredraw(curarea);
#endif
}
/* ************************** TRANSFORMATIONS **************************** */
static void view_editmove(unsigned short UNUSED(event))
{
#if 0 // TRANSFORM_FIX_ME
int refresh = 0;
/* Regular: Zoom in */
/* Shift: Scroll up */
/* Ctrl: Scroll right */
/* Alt-Shift: Rotate up */
/* Alt-Ctrl: Rotate right */
/* only work in 3D window for now
* In the end, will have to send to event to a 2D window handler instead
*/
if (Trans.flag & T_2D_EDIT)
return;
switch (event) {
case WHEELUPMOUSE:
if (G.qual & LR_SHIFTKEY) {
if (G.qual & LR_ALTKEY) {
G.qual &= ~LR_SHIFTKEY;
persptoetsen(PAD2);
G.qual |= LR_SHIFTKEY;
}
else {
persptoetsen(PAD2);
}
}
else if (G.qual & LR_CTRLKEY) {
if (G.qual & LR_ALTKEY) {
G.qual &= ~LR_CTRLKEY;
persptoetsen(PAD4);
G.qual |= LR_CTRLKEY;
}
else {
persptoetsen(PAD4);
}
}
else if (U.uiflag & USER_WHEELZOOMDIR)
persptoetsen(PADMINUS);
else
persptoetsen(PADPLUSKEY);
refresh = 1;
break;
case WHEELDOWNMOUSE:
if (G.qual & LR_SHIFTKEY) {
if (G.qual & LR_ALTKEY) {
G.qual &= ~LR_SHIFTKEY;
persptoetsen(PAD8);
G.qual |= LR_SHIFTKEY;
}
else {
persptoetsen(PAD8);
}
}
else if (G.qual & LR_CTRLKEY) {
if (G.qual & LR_ALTKEY) {
G.qual &= ~LR_CTRLKEY;
persptoetsen(PAD6);
G.qual |= LR_CTRLKEY;
}
else {
persptoetsen(PAD6);
}
}
else if (U.uiflag & USER_WHEELZOOMDIR)
persptoetsen(PADPLUSKEY);
else
persptoetsen(PADMINUS);
refresh = 1;
break;
}
if (refresh)
setTransformViewMatrices(&Trans);
#endif
}
/* ************************************************* */
2.5 Modal keymaps. I've tried to make it as simple as possible, yet still using sufficient facilities to enable self-documenting UIs, saving/reading in files, and proper Python support. The simplicity is: the 'modal keymap' just checks an event, uses event matching similarly to other keymap matching, and if there's a match it changes the event type, and sets the event value to what the modal keymap has defined. The event values are being defined using EnumPropertyItem structs, so the UI will be able to show all options in self-documenting way. This system also allows to still handle hardcoded own events. Tech doc: 1) define keymap - Create map with unique name, WM_modalkeymap_add() - Give map property definitions (EnumPropertyItem *) This only for UI, so user can get information on available options 2) items - WM_modalkeymap_add_item(): give it an enum value for events 3) activate - In keymap definition code, assign the modal keymap to operatortype WM_modalkeymap_assign() 4) event manager - The event handler will check for modal keymap, if so: - If the modal map has a match: - Sets event->type to EVT_MODAL_MAP - Sets event->val to the enum value 5) modal handler - If event type is EVT_MODAL_MAP: - Check event->val, handle it - Other events can just be handled still Two examples added in the code: editors/transform/transform.c: transform_modal_keymap() editors/screen/screen_ops.c: keymap_modal_set() Also: to support 'key release' the define KM_RELEASE now is officially used in event manager, this is not '0', so don't check key events with the old convention if(event->val) but use if(event->val==KM_PRESS)
2009-07-21 11:03:07 +00:00
/* NOTE: these defines are saved in keymap files, do not change values but just add new ones */
enum {
TFM_MODAL_CANCEL = 1,
TFM_MODAL_CONFIRM = 2,
TFM_MODAL_TRANSLATE = 3,
TFM_MODAL_ROTATE = 4,
TFM_MODAL_RESIZE = 5,
TFM_MODAL_SNAP_INV_ON = 6,
TFM_MODAL_SNAP_INV_OFF = 7,
TFM_MODAL_SNAP_TOGGLE = 8,
TFM_MODAL_AXIS_X = 9,
TFM_MODAL_AXIS_Y = 10,
TFM_MODAL_AXIS_Z = 11,
TFM_MODAL_PLANE_X = 12,
TFM_MODAL_PLANE_Y = 13,
TFM_MODAL_PLANE_Z = 14,
TFM_MODAL_CONS_OFF = 15,
TFM_MODAL_ADD_SNAP = 16,
TFM_MODAL_REMOVE_SNAP = 17,
/* 18 and 19 used by numinput, defined in transform.h */
TFM_MODAL_PROPSIZE_UP = 20,
TFM_MODAL_PROPSIZE_DOWN = 21,
TFM_MODAL_AUTOIK_LEN_INC = 22,
TFM_MODAL_AUTOIK_LEN_DEC = 23,
TFM_MODAL_EDGESLIDE_UP = 24,
TFM_MODAL_EDGESLIDE_DOWN = 25,
/* for analog input, like trackpad */
TFM_MODAL_PROPSIZE = 26,
/* node editor insert offset (aka auto-offset) direction toggle */
TFM_MODAL_INSERTOFS_TOGGLE_DIR = 27,
};
static bool transform_modal_item_poll(const wmOperator *op, int value)
{
const TransInfo *t = op->customdata;
switch (value) {
case TFM_MODAL_CANCEL: {
if ((t->flag & T_RELEASE_CONFIRM) && ISMOUSE(t->launch_event)) {
return false;
}
break;
}
case TFM_MODAL_PROPSIZE:
case TFM_MODAL_PROPSIZE_UP:
case TFM_MODAL_PROPSIZE_DOWN: {
if ((t->flag & T_PROP_EDIT) == 0) {
return false;
}
break;
}
case TFM_MODAL_ADD_SNAP:
case TFM_MODAL_REMOVE_SNAP: {
if (t->spacetype != SPACE_VIEW3D) {
return false;
}
else if (t->tsnap.mode & (SCE_SNAP_MODE_INCREMENT | SCE_SNAP_MODE_GRID)) {
return false;
}
else if (!validSnap(t)) {
return false;
}
break;
}
case TFM_MODAL_AXIS_X:
case TFM_MODAL_AXIS_Y:
case TFM_MODAL_AXIS_Z:
case TFM_MODAL_PLANE_X:
case TFM_MODAL_PLANE_Y:
case TFM_MODAL_PLANE_Z: {
if (t->flag & T_NO_CONSTRAINT) {
return false;
}
if (!ELEM(value, TFM_MODAL_AXIS_X, TFM_MODAL_AXIS_Y)) {
if (t->flag & T_2D_EDIT) {
return false;
}
}
break;
}
case TFM_MODAL_CONS_OFF: {
if ((t->con.mode & CON_APPLY) == 0) {
return false;
}
break;
}
case TFM_MODAL_EDGESLIDE_UP:
case TFM_MODAL_EDGESLIDE_DOWN: {
if (t->mode != TFM_EDGE_SLIDE) {
return false;
}
break;
}
case TFM_MODAL_INSERTOFS_TOGGLE_DIR: {
if (t->spacetype != SPACE_NODE) {
return false;
}
break;
}
case TFM_MODAL_AUTOIK_LEN_INC:
case TFM_MODAL_AUTOIK_LEN_DEC: {
if ((t->flag & T_AUTOIK) == 0) {
return false;
}
break;
}
}
return true;
}
2.5 Modal keymaps. I've tried to make it as simple as possible, yet still using sufficient facilities to enable self-documenting UIs, saving/reading in files, and proper Python support. The simplicity is: the 'modal keymap' just checks an event, uses event matching similarly to other keymap matching, and if there's a match it changes the event type, and sets the event value to what the modal keymap has defined. The event values are being defined using EnumPropertyItem structs, so the UI will be able to show all options in self-documenting way. This system also allows to still handle hardcoded own events. Tech doc: 1) define keymap - Create map with unique name, WM_modalkeymap_add() - Give map property definitions (EnumPropertyItem *) This only for UI, so user can get information on available options 2) items - WM_modalkeymap_add_item(): give it an enum value for events 3) activate - In keymap definition code, assign the modal keymap to operatortype WM_modalkeymap_assign() 4) event manager - The event handler will check for modal keymap, if so: - If the modal map has a match: - Sets event->type to EVT_MODAL_MAP - Sets event->val to the enum value 5) modal handler - If event type is EVT_MODAL_MAP: - Check event->val, handle it - Other events can just be handled still Two examples added in the code: editors/transform/transform.c: transform_modal_keymap() editors/screen/screen_ops.c: keymap_modal_set() Also: to support 'key release' the define KM_RELEASE now is officially used in event manager, this is not '0', so don't check key events with the old convention if(event->val) but use if(event->val==KM_PRESS)
2009-07-21 11:03:07 +00:00
/* called in transform_ops.c, on each regeneration of keymaps */
2012-06-10 19:59:02 +00:00
wmKeyMap *transform_modal_keymap(wmKeyConfig *keyconf)
2.5 Modal keymaps. I've tried to make it as simple as possible, yet still using sufficient facilities to enable self-documenting UIs, saving/reading in files, and proper Python support. The simplicity is: the 'modal keymap' just checks an event, uses event matching similarly to other keymap matching, and if there's a match it changes the event type, and sets the event value to what the modal keymap has defined. The event values are being defined using EnumPropertyItem structs, so the UI will be able to show all options in self-documenting way. This system also allows to still handle hardcoded own events. Tech doc: 1) define keymap - Create map with unique name, WM_modalkeymap_add() - Give map property definitions (EnumPropertyItem *) This only for UI, so user can get information on available options 2) items - WM_modalkeymap_add_item(): give it an enum value for events 3) activate - In keymap definition code, assign the modal keymap to operatortype WM_modalkeymap_assign() 4) event manager - The event handler will check for modal keymap, if so: - If the modal map has a match: - Sets event->type to EVT_MODAL_MAP - Sets event->val to the enum value 5) modal handler - If event type is EVT_MODAL_MAP: - Check event->val, handle it - Other events can just be handled still Two examples added in the code: editors/transform/transform.c: transform_modal_keymap() editors/screen/screen_ops.c: keymap_modal_set() Also: to support 'key release' the define KM_RELEASE now is officially used in event manager, this is not '0', so don't check key events with the old convention if(event->val) but use if(event->val==KM_PRESS)
2009-07-21 11:03:07 +00:00
{
static const EnumPropertyItem modal_items[] = {
{TFM_MODAL_CONFIRM, "CONFIRM", 0, "Confirm", ""},
{TFM_MODAL_CANCEL, "CANCEL", 0, "Cancel", ""},
{TFM_MODAL_AXIS_X, "AXIS_X", 0, "X axis", ""},
{TFM_MODAL_AXIS_Y, "AXIS_Y", 0, "Y axis", ""},
{TFM_MODAL_AXIS_Z, "AXIS_Z", 0, "Z axis", ""},
{TFM_MODAL_PLANE_X, "PLANE_X", 0, "X plane", ""},
{TFM_MODAL_PLANE_Y, "PLANE_Y", 0, "Y plane", ""},
{TFM_MODAL_PLANE_Z, "PLANE_Z", 0, "Z plane", ""},
{TFM_MODAL_CONS_OFF, "CONS_OFF", 0, "Clear Constraints", ""},
{TFM_MODAL_SNAP_INV_ON, "SNAP_INV_ON", 0, "Snap Invert", ""},
{TFM_MODAL_SNAP_INV_OFF, "SNAP_INV_OFF", 0, "Snap Invert (Off)", ""},
{TFM_MODAL_SNAP_TOGGLE, "SNAP_TOGGLE", 0, "Snap Toggle", ""},
{TFM_MODAL_ADD_SNAP, "ADD_SNAP", 0, "Add Snap Point", ""},
{TFM_MODAL_REMOVE_SNAP, "REMOVE_SNAP", 0, "Remove Last Snap Point", ""},
{NUM_MODAL_INCREMENT_UP, "INCREMENT_UP", 0, "Numinput Increment Up", ""},
{NUM_MODAL_INCREMENT_DOWN, "INCREMENT_DOWN", 0, "Numinput Increment Down", ""},
{TFM_MODAL_PROPSIZE_UP, "PROPORTIONAL_SIZE_UP", 0, "Increase Proportional Influence", ""},
{TFM_MODAL_PROPSIZE_DOWN,
"PROPORTIONAL_SIZE_DOWN",
0,
"Decrease Proportional Influence",
""},
{TFM_MODAL_AUTOIK_LEN_INC, "AUTOIK_CHAIN_LEN_UP", 0, "Increase Max AutoIK Chain Length", ""},
{TFM_MODAL_AUTOIK_LEN_DEC,
"AUTOIK_CHAIN_LEN_DOWN",
0,
"Decrease Max AutoIK Chain Length",
""},
{TFM_MODAL_EDGESLIDE_UP, "EDGESLIDE_EDGE_NEXT", 0, "Select next Edge Slide Edge", ""},
{TFM_MODAL_EDGESLIDE_DOWN, "EDGESLIDE_PREV_NEXT", 0, "Select previous Edge Slide Edge", ""},
{TFM_MODAL_PROPSIZE, "PROPORTIONAL_SIZE", 0, "Adjust Proportional Influence", ""},
{TFM_MODAL_INSERTOFS_TOGGLE_DIR,
"INSERTOFS_TOGGLE_DIR",
0,
"Toggle Direction for Node Auto-offset",
""},
{TFM_MODAL_TRANSLATE, "TRANSLATE", 0, "Move", ""},
{TFM_MODAL_ROTATE, "ROTATE", 0, "Rotate", ""},
{TFM_MODAL_RESIZE, "RESIZE", 0, "Resize", ""},
{0, NULL, 0, NULL, NULL},
};
wmKeyMap *keymap = WM_modalkeymap_get(keyconf, "Transform Modal Map");
keymap = WM_modalkeymap_add(keyconf, "Transform Modal Map", modal_items);
keymap->poll_modal_item = transform_modal_item_poll;
return keymap;
2.5 Modal keymaps. I've tried to make it as simple as possible, yet still using sufficient facilities to enable self-documenting UIs, saving/reading in files, and proper Python support. The simplicity is: the 'modal keymap' just checks an event, uses event matching similarly to other keymap matching, and if there's a match it changes the event type, and sets the event value to what the modal keymap has defined. The event values are being defined using EnumPropertyItem structs, so the UI will be able to show all options in self-documenting way. This system also allows to still handle hardcoded own events. Tech doc: 1) define keymap - Create map with unique name, WM_modalkeymap_add() - Give map property definitions (EnumPropertyItem *) This only for UI, so user can get information on available options 2) items - WM_modalkeymap_add_item(): give it an enum value for events 3) activate - In keymap definition code, assign the modal keymap to operatortype WM_modalkeymap_assign() 4) event manager - The event handler will check for modal keymap, if so: - If the modal map has a match: - Sets event->type to EVT_MODAL_MAP - Sets event->val to the enum value 5) modal handler - If event type is EVT_MODAL_MAP: - Check event->val, handle it - Other events can just be handled still Two examples added in the code: editors/transform/transform.c: transform_modal_keymap() editors/screen/screen_ops.c: keymap_modal_set() Also: to support 'key release' the define KM_RELEASE now is officially used in event manager, this is not '0', so don't check key events with the old convention if(event->val) but use if(event->val==KM_PRESS)
2009-07-21 11:03:07 +00:00
}
static void transform_event_xyz_constraint(TransInfo *t, short key_type, char cmode, bool is_plane)
{
if (!(t->flag & T_NO_CONSTRAINT)) {
int constraint_axis, constraint_plane;
const bool edit_2d = (t->flag & T_2D_EDIT) != 0;
const char *msg1 = "", *msg2 = "", *msg3 = "";
char axis;
/* Initialize */
switch (key_type) {
case XKEY:
msg1 = IFACE_("along X");
msg2 = IFACE_("along %s X");
msg3 = IFACE_("locking %s X");
axis = 'X';
constraint_axis = CON_AXIS0;
break;
case YKEY:
msg1 = IFACE_("along Y");
msg2 = IFACE_("along %s Y");
msg3 = IFACE_("locking %s Y");
axis = 'Y';
constraint_axis = CON_AXIS1;
break;
case ZKEY:
msg1 = IFACE_("along Z");
msg2 = IFACE_("along %s Z");
msg3 = IFACE_("locking %s Z");
axis = 'Z';
constraint_axis = CON_AXIS2;
break;
default:
/* Invalid key */
return;
}
constraint_plane = ((CON_AXIS0 | CON_AXIS1 | CON_AXIS2) & (~constraint_axis));
if (edit_2d && (key_type != ZKEY)) {
if (cmode == axis) {
stopConstraint(t);
}
else {
setUserConstraint(t, V3D_ORIENT_GLOBAL, constraint_axis, msg1);
}
}
else if (!edit_2d) {
if (cmode != axis) {
/* First press, constraint to an axis. */
t->orientation.index = 0;
const short *orientation_ptr = t->orientation.types[t->orientation.index];
const short orientation = orientation_ptr ? *orientation_ptr : V3D_ORIENT_GLOBAL;
if (is_plane == false) {
setUserConstraint(t, orientation, constraint_axis, msg2);
}
else {
setUserConstraint(t, orientation, constraint_plane, msg3);
}
}
else {
/* Successive presses on existing axis, cycle orientation modes. */
t->orientation.index = (t->orientation.index + 1) % ARRAY_SIZE(t->orientation.types);
if (t->orientation.index == 0) {
stopConstraint(t);
}
else {
const short *orientation_ptr = t->orientation.types[t->orientation.index];
const short orientation = orientation_ptr ? *orientation_ptr : V3D_ORIENT_GLOBAL;
if (is_plane == false) {
setUserConstraint(t, orientation, constraint_axis, msg2);
}
else {
setUserConstraint(t, orientation, constraint_plane, msg3);
}
}
}
}
t->redraw |= TREDRAW_HARD;
}
}
2.5 Modal keymaps. I've tried to make it as simple as possible, yet still using sufficient facilities to enable self-documenting UIs, saving/reading in files, and proper Python support. The simplicity is: the 'modal keymap' just checks an event, uses event matching similarly to other keymap matching, and if there's a match it changes the event type, and sets the event value to what the modal keymap has defined. The event values are being defined using EnumPropertyItem structs, so the UI will be able to show all options in self-documenting way. This system also allows to still handle hardcoded own events. Tech doc: 1) define keymap - Create map with unique name, WM_modalkeymap_add() - Give map property definitions (EnumPropertyItem *) This only for UI, so user can get information on available options 2) items - WM_modalkeymap_add_item(): give it an enum value for events 3) activate - In keymap definition code, assign the modal keymap to operatortype WM_modalkeymap_assign() 4) event manager - The event handler will check for modal keymap, if so: - If the modal map has a match: - Sets event->type to EVT_MODAL_MAP - Sets event->val to the enum value 5) modal handler - If event type is EVT_MODAL_MAP: - Check event->val, handle it - Other events can just be handled still Two examples added in the code: editors/transform/transform.c: transform_modal_keymap() editors/screen/screen_ops.c: keymap_modal_set() Also: to support 'key release' the define KM_RELEASE now is officially used in event manager, this is not '0', so don't check key events with the old convention if(event->val) but use if(event->val==KM_PRESS)
2009-07-21 11:03:07 +00:00
int transformEvent(TransInfo *t, const wmEvent *event)
{
char cmode = constraintModeToChar(t);
bool handled = false;
const int modifiers_prev = t->modifiers;
t->redraw |= handleMouseInput(t, &t->mouse, event);
/* Handle modal numinput events first, if already activated. */
if (((event->val == KM_PRESS) || (event->type == EVT_MODAL_MAP)) && hasNumInput(&t->num) &&
handleNumInput(t->context, &(t->num), event)) {
t->redraw |= TREDRAW_HARD;
handled = true;
}
else if (event->type == MOUSEMOVE) {
2019-04-22 09:19:45 +10:00
if (t->modifiers & MOD_CONSTRAINT_SELECT) {
t->con.mode |= CON_SELECT;
2019-04-22 09:19:45 +10:00
}
copy_v2_v2_int(t->mval, event->mval);
/* Use this for soft redraw. Might cause flicker in object mode */
// t->redraw |= TREDRAW_SOFT;
t->redraw |= TREDRAW_HARD;
if (t->state == TRANS_STARTING) {
t->state = TRANS_RUNNING;
}
applyMouseInput(t, &t->mouse, t->mval, t->values);
// Snapping mouse move events
t->redraw |= handleSnapping(t, event);
handled = true;
}
/* handle modal keymap first */
else if (event->type == EVT_MODAL_MAP) {
switch (event->val) {
case TFM_MODAL_CANCEL:
t->state = TRANS_CANCEL;
handled = true;
break;
case TFM_MODAL_CONFIRM:
t->state = TRANS_CONFIRM;
handled = true;
break;
case TFM_MODAL_TRANSLATE:
/* only switch when... */
if (ELEM(t->mode,
TFM_ROTATION,
TFM_RESIZE,
TFM_TRACKBALL,
TFM_EDGE_SLIDE,
TFM_VERT_SLIDE)) {
restoreTransObjects(t);
resetTransModal(t);
resetTransRestrictions(t);
initTranslation(t);
initSnapping(t, NULL); // need to reinit after mode change
t->redraw |= TREDRAW_HARD;
WM_event_add_mousemove(t->context);
handled = true;
}
else if (t->mode == TFM_SEQ_SLIDE) {
t->flag ^= T_ALT_TRANSFORM;
t->redraw |= TREDRAW_HARD;
handled = true;
}
else {
if (t->obedit_type == OB_MESH) {
if ((t->mode == TFM_TRANSLATION) && (t->spacetype == SPACE_VIEW3D)) {
restoreTransObjects(t);
resetTransModal(t);
resetTransRestrictions(t);
/* first try edge slide */
initEdgeSlide(t);
/* if that fails, do vertex slide */
if (t->state == TRANS_CANCEL) {
resetTransModal(t);
t->state = TRANS_STARTING;
initVertSlide(t);
}
/* vert slide can fail on unconnected vertices (rare but possible) */
if (t->state == TRANS_CANCEL) {
resetTransModal(t);
t->mode = TFM_TRANSLATION;
t->state = TRANS_STARTING;
restoreTransObjects(t);
resetTransRestrictions(t);
initTranslation(t);
}
initSnapping(t, NULL); // need to reinit after mode change
t->redraw |= TREDRAW_HARD;
handled = true;
WM_event_add_mousemove(t->context);
}
}
else if (t->options & (CTX_MOVIECLIP | CTX_MASK)) {
if (t->mode == TFM_TRANSLATION) {
restoreTransObjects(t);
t->flag ^= T_ALT_TRANSFORM;
t->redraw |= TREDRAW_HARD;
handled = true;
}
}
}
break;
case TFM_MODAL_ROTATE:
/* only switch when... */
if (!(t->options & CTX_TEXTURE) && !(t->options & (CTX_MOVIECLIP | CTX_MASK))) {
if (ELEM(t->mode,
TFM_ROTATION,
TFM_RESIZE,
TFM_TRACKBALL,
TFM_TRANSLATION,
TFM_EDGE_SLIDE,
TFM_VERT_SLIDE)) {
restoreTransObjects(t);
resetTransModal(t);
resetTransRestrictions(t);
if (t->mode == TFM_ROTATION) {
initTrackball(t);
}
else {
initRotation(t);
}
initSnapping(t, NULL); // need to reinit after mode change
t->redraw |= TREDRAW_HARD;
handled = true;
}
}
break;
case TFM_MODAL_RESIZE:
/* only switch when... */
if (ELEM(t->mode,
TFM_ROTATION,
TFM_TRANSLATION,
TFM_TRACKBALL,
TFM_EDGE_SLIDE,
TFM_VERT_SLIDE)) {
/* Scale isn't normally very useful after extrude along normals, see T39756 */
if ((t->con.mode & CON_APPLY) && (t->con.orientation == V3D_ORIENT_NORMAL)) {
stopConstraint(t);
}
restoreTransObjects(t);
resetTransModal(t);
resetTransRestrictions(t);
initResize(t);
initSnapping(t, NULL); // need to reinit after mode change
t->redraw |= TREDRAW_HARD;
handled = true;
}
else if (t->mode == TFM_SHRINKFATTEN) {
t->flag ^= T_ALT_TRANSFORM;
t->redraw |= TREDRAW_HARD;
handled = true;
}
else if (t->mode == TFM_RESIZE) {
if (t->options & CTX_MOVIECLIP) {
restoreTransObjects(t);
t->flag ^= T_ALT_TRANSFORM;
t->redraw |= TREDRAW_HARD;
handled = true;
}
}
break;
case TFM_MODAL_SNAP_INV_ON:
t->modifiers |= MOD_SNAP_INVERT;
t->redraw |= TREDRAW_HARD;
handled = true;
break;
case TFM_MODAL_SNAP_INV_OFF:
t->modifiers &= ~MOD_SNAP_INVERT;
t->redraw |= TREDRAW_HARD;
handled = true;
break;
case TFM_MODAL_SNAP_TOGGLE:
t->modifiers ^= MOD_SNAP;
t->redraw |= TREDRAW_HARD;
handled = true;
break;
case TFM_MODAL_AXIS_X:
if (!(t->flag & T_NO_CONSTRAINT)) {
transform_event_xyz_constraint(t, XKEY, cmode, false);
t->redraw |= TREDRAW_HARD;
handled = true;
}
break;
case TFM_MODAL_AXIS_Y:
if ((t->flag & T_NO_CONSTRAINT) == 0) {
transform_event_xyz_constraint(t, YKEY, cmode, false);
t->redraw |= TREDRAW_HARD;
handled = true;
}
break;
case TFM_MODAL_AXIS_Z:
if ((t->flag & (T_NO_CONSTRAINT)) == 0) {
transform_event_xyz_constraint(t, ZKEY, cmode, false);
t->redraw |= TREDRAW_HARD;
handled = true;
}
break;
case TFM_MODAL_PLANE_X:
if ((t->flag & (T_NO_CONSTRAINT | T_2D_EDIT)) == 0) {
transform_event_xyz_constraint(t, XKEY, cmode, true);
t->redraw |= TREDRAW_HARD;
handled = true;
}
break;
case TFM_MODAL_PLANE_Y:
if ((t->flag & (T_NO_CONSTRAINT | T_2D_EDIT)) == 0) {
transform_event_xyz_constraint(t, YKEY, cmode, true);
t->redraw |= TREDRAW_HARD;
handled = true;
}
break;
case TFM_MODAL_PLANE_Z:
if ((t->flag & (T_NO_CONSTRAINT | T_2D_EDIT)) == 0) {
transform_event_xyz_constraint(t, ZKEY, cmode, true);
t->redraw |= TREDRAW_HARD;
handled = true;
}
break;
case TFM_MODAL_CONS_OFF:
if ((t->flag & T_NO_CONSTRAINT) == 0) {
stopConstraint(t);
t->redraw |= TREDRAW_HARD;
handled = true;
}
break;
case TFM_MODAL_ADD_SNAP:
addSnapPoint(t);
t->redraw |= TREDRAW_HARD;
handled = true;
break;
case TFM_MODAL_REMOVE_SNAP:
removeSnapPoint(t);
t->redraw |= TREDRAW_HARD;
handled = true;
break;
case TFM_MODAL_PROPSIZE:
/* MOUSEPAN usage... */
if (t->flag & T_PROP_EDIT) {
float fac = 1.0f + 0.005f * (event->y - event->prevy);
t->prop_size *= fac;
if (t->spacetype == SPACE_VIEW3D && t->persp != RV3D_ORTHO) {
t->prop_size = max_ff(min_ff(t->prop_size, ((View3D *)t->view)->clip_end),
T_PROP_SIZE_MIN);
}
else {
t->prop_size = max_ff(min_ff(t->prop_size, T_PROP_SIZE_MAX), T_PROP_SIZE_MIN);
}
calculatePropRatio(t);
t->redraw |= TREDRAW_HARD;
handled = true;
}
break;
case TFM_MODAL_PROPSIZE_UP:
if (t->flag & T_PROP_EDIT) {
t->prop_size *= (t->modifiers & MOD_PRECISION) ? 1.01f : 1.1f;
if (t->spacetype == SPACE_VIEW3D && t->persp != RV3D_ORTHO) {
t->prop_size = min_ff(t->prop_size, ((View3D *)t->view)->clip_end);
}
else {
t->prop_size = min_ff(t->prop_size, T_PROP_SIZE_MAX);
}
calculatePropRatio(t);
t->redraw |= TREDRAW_HARD;
handled = true;
}
break;
case TFM_MODAL_PROPSIZE_DOWN:
if (t->flag & T_PROP_EDIT) {
t->prop_size /= (t->modifiers & MOD_PRECISION) ? 1.01f : 1.1f;
t->prop_size = max_ff(t->prop_size, T_PROP_SIZE_MIN);
calculatePropRatio(t);
t->redraw |= TREDRAW_HARD;
handled = true;
}
break;
case TFM_MODAL_AUTOIK_LEN_INC:
if (t->flag & T_AUTOIK) {
transform_autoik_update(t, 1);
t->redraw |= TREDRAW_HARD;
handled = true;
}
break;
case TFM_MODAL_AUTOIK_LEN_DEC:
if (t->flag & T_AUTOIK) {
transform_autoik_update(t, -1);
t->redraw |= TREDRAW_HARD;
handled = true;
}
break;
case TFM_MODAL_INSERTOFS_TOGGLE_DIR:
if (t->spacetype == SPACE_NODE) {
SpaceNode *snode = (SpaceNode *)t->sa->spacedata.first;
BLI_assert(t->sa->spacetype == t->spacetype);
if (snode->insert_ofs_dir == SNODE_INSERTOFS_DIR_RIGHT) {
snode->insert_ofs_dir = SNODE_INSERTOFS_DIR_LEFT;
}
else if (snode->insert_ofs_dir == SNODE_INSERTOFS_DIR_LEFT) {
snode->insert_ofs_dir = SNODE_INSERTOFS_DIR_RIGHT;
}
else {
BLI_assert(0);
}
t->redraw |= TREDRAW_SOFT;
}
break;
/* Those two are only handled in transform's own handler, see T44634! */
case TFM_MODAL_EDGESLIDE_UP:
case TFM_MODAL_EDGESLIDE_DOWN:
default:
break;
}
}
/* else do non-mapped events */
else if (event->val == KM_PRESS) {
switch (event->type) {
case RIGHTMOUSE:
t->state = TRANS_CANCEL;
handled = true;
break;
/* enforce redraw of transform when modifiers are used */
case LEFTSHIFTKEY:
case RIGHTSHIFTKEY:
t->modifiers |= MOD_CONSTRAINT_PLANE;
t->redraw |= TREDRAW_HARD;
handled = true;
break;
case SPACEKEY:
t->state = TRANS_CONFIRM;
handled = true;
break;
case MIDDLEMOUSE:
if ((t->flag & T_NO_CONSTRAINT) == 0) {
/* exception for switching to dolly, or trackball, in camera view */
if (t->flag & T_CAMERA) {
2019-04-22 09:19:45 +10:00
if (t->mode == TFM_TRANSLATION) {
setLocalConstraint(t, (CON_AXIS2), IFACE_("along local Z"));
2019-04-22 09:19:45 +10:00
}
else if (t->mode == TFM_ROTATION) {
restoreTransObjects(t);
initTrackball(t);
}
}
else {
t->modifiers |= MOD_CONSTRAINT_SELECT;
if (t->con.mode & CON_APPLY) {
stopConstraint(t);
}
else {
if (event->shift) {
/* bit hackish... but it prevents mmb select to print the
* orientation from menu */
float mati[3][3];
strcpy(t->spacename, "global");
unit_m3(mati);
initSelectConstraint(t, mati);
}
else {
initSelectConstraint(t, t->spacemtx);
}
postSelectConstraint(t);
}
}
t->redraw |= TREDRAW_HARD;
handled = true;
}
break;
case ESCKEY:
t->state = TRANS_CANCEL;
handled = true;
break;
case PADENTER:
case RETKEY:
t->state = TRANS_CONFIRM;
handled = true;
break;
case GKEY:
/* only switch when... */
if (ELEM(t->mode, TFM_ROTATION, TFM_RESIZE, TFM_TRACKBALL)) {
restoreTransObjects(t);
resetTransModal(t);
resetTransRestrictions(t);
initTranslation(t);
initSnapping(t, NULL); // need to reinit after mode change
t->redraw |= TREDRAW_HARD;
handled = true;
}
break;
case SKEY:
/* only switch when... */
if (ELEM(t->mode, TFM_ROTATION, TFM_TRANSLATION, TFM_TRACKBALL)) {
restoreTransObjects(t);
resetTransModal(t);
resetTransRestrictions(t);
initResize(t);
initSnapping(t, NULL); // need to reinit after mode change
t->redraw |= TREDRAW_HARD;
handled = true;
}
break;
case RKEY:
/* only switch when... */
if (!(t->options & CTX_TEXTURE)) {
if (ELEM(t->mode, TFM_ROTATION, TFM_RESIZE, TFM_TRACKBALL, TFM_TRANSLATION)) {
restoreTransObjects(t);
resetTransModal(t);
resetTransRestrictions(t);
if (t->mode == TFM_ROTATION) {
initTrackball(t);
}
else {
initRotation(t);
}
initSnapping(t, NULL); // need to reinit after mode change
t->redraw |= TREDRAW_HARD;
handled = true;
}
}
break;
case CKEY:
if (event->alt) {
if (!(t->options & CTX_NO_PET)) {
t->flag ^= T_PROP_CONNECTED;
sort_trans_data_dist(t);
calculatePropRatio(t);
t->redraw = TREDRAW_HARD;
handled = true;
}
}
break;
case OKEY:
if (t->flag & T_PROP_EDIT && event->shift) {
t->prop_mode = (t->prop_mode + 1) % PROP_MODE_MAX;
calculatePropRatio(t);
t->redraw |= TREDRAW_HARD;
handled = true;
}
break;
case PADPLUSKEY:
if (event->alt && t->flag & T_PROP_EDIT) {
t->prop_size *= (t->modifiers & MOD_PRECISION) ? 1.01f : 1.1f;
2019-04-22 09:19:45 +10:00
if (t->spacetype == SPACE_VIEW3D && t->persp != RV3D_ORTHO) {
t->prop_size = min_ff(t->prop_size, ((View3D *)t->view)->clip_end);
2019-04-22 09:19:45 +10:00
}
calculatePropRatio(t);
t->redraw = TREDRAW_HARD;
handled = true;
}
break;
case PAGEUPKEY:
case WHEELDOWNMOUSE:
if (t->flag & T_AUTOIK) {
transform_autoik_update(t, 1);
}
else {
view_editmove(event->type);
}
t->redraw = TREDRAW_HARD;
handled = true;
break;
case PADMINUS:
if (event->alt && t->flag & T_PROP_EDIT) {
t->prop_size /= (t->modifiers & MOD_PRECISION) ? 1.01f : 1.1f;
calculatePropRatio(t);
t->redraw = TREDRAW_HARD;
handled = true;
}
break;
case PAGEDOWNKEY:
case WHEELUPMOUSE:
if (t->flag & T_AUTOIK) {
transform_autoik_update(t, -1);
}
else {
view_editmove(event->type);
}
t->redraw = TREDRAW_HARD;
handled = true;
break;
case LEFTALTKEY:
case RIGHTALTKEY:
if (ELEM(t->spacetype, SPACE_SEQ, SPACE_VIEW3D)) {
t->flag |= T_ALT_TRANSFORM;
t->redraw |= TREDRAW_HARD;
handled = true;
}
break;
case NKEY:
if (ELEM(t->mode, TFM_ROTATION)) {
if ((t->flag & T_EDIT) && t->obedit_type == OB_MESH) {
restoreTransObjects(t);
resetTransModal(t);
resetTransRestrictions(t);
initNormalRotation(t);
t->redraw = TREDRAW_HARD;
handled = true;
}
}
break;
default:
break;
}
/* Snapping key events */
t->redraw |= handleSnapping(t, event);
}
else if (event->val == KM_RELEASE) {
switch (event->type) {
case LEFTSHIFTKEY:
case RIGHTSHIFTKEY:
t->modifiers &= ~MOD_CONSTRAINT_PLANE;
t->redraw |= TREDRAW_HARD;
handled = true;
break;
case MIDDLEMOUSE:
if ((t->flag & T_NO_CONSTRAINT) == 0) {
t->modifiers &= ~MOD_CONSTRAINT_SELECT;
postSelectConstraint(t);
t->redraw |= TREDRAW_HARD;
handled = true;
}
break;
case LEFTALTKEY:
case RIGHTALTKEY:
if (ELEM(t->spacetype, SPACE_SEQ, SPACE_VIEW3D)) {
t->flag &= ~T_ALT_TRANSFORM;
t->redraw |= TREDRAW_HARD;
handled = true;
}
break;
default:
break;
}
/* confirm transform if launch key is released after mouse move */
if (t->flag & T_RELEASE_CONFIRM) {
/* XXX Keyrepeat bug in Xorg messes this up, will test when fixed */
if ((event->type == t->launch_event) && ISMOUSE(t->launch_event)) {
t->state = TRANS_CONFIRM;
}
}
}
/* if we change snap options, get the unsnapped values back */
if ((t->modifiers & (MOD_SNAP | MOD_SNAP_INVERT)) !=
(modifiers_prev & (MOD_SNAP | MOD_SNAP_INVERT))) {
applyMouseInput(t, &t->mouse, t->mval, t->values);
}
/* Per transform event, if present */
if (t->handleEvent && (!handled ||
/* Needed for vertex slide, see [#38756] */
(event->type == MOUSEMOVE))) {
t->redraw |= t->handleEvent(t, event);
}
/* Try to init modal numinput now, if possible. */
if (!(handled || t->redraw) && ((event->val == KM_PRESS) || (event->type == EVT_MODAL_MAP)) &&
handleNumInput(t->context, &(t->num), event)) {
t->redraw |= TREDRAW_HARD;
handled = true;
}
if (t->redraw && !ELEM(event->type, MOUSEMOVE, INBETWEEN_MOUSEMOVE)) {
WM_window_status_area_tag_redraw(CTX_wm_window(t->context));
}
if (handled || t->redraw) {
return 0;
}
else {
return OPERATOR_PASS_THROUGH;
}
}
bool calculateTransformCenter(bContext *C, int centerMode, float cent3d[3], float cent2d[2])
{
TransInfo *t = MEM_callocN(sizeof(TransInfo), "TransInfo data");
bool success;
t->context = C;
t->state = TRANS_RUNNING;
/* avoid calculating PET */
t->options = CTX_NO_PET;
t->mode = TFM_DUMMY;
initTransInfo(C, t, NULL, NULL);
/* avoid doing connectivity lookups (when V3D_AROUND_LOCAL_ORIGINS is set) */
t->around = V3D_AROUND_CENTER_BOUNDS;
createTransData(C, t); // make TransData structs from selection
t->around = centerMode; // override userdefined mode
if (t->data_len_all == 0) {
success = false;
}
else {
success = true;
calculateCenter(t);
2012-05-22 22:03:41 +00:00
if (cent2d) {
copy_v2_v2(cent2d, t->center2d);
}
if (cent3d) {
// Copy center from constraint center. Transform center can be local
copy_v3_v3(cent3d, t->center_global);
}
}
/* aftertrans does insert keyframes, and clears base flags; doesn't read transdata */
special_aftertrans_update(C, t);
postTrans(C, t);
MEM_freeN(t);
return success;
}
typedef enum {
UP,
DOWN,
LEFT,
RIGHT,
} ArrowDirection;
#define POS_INDEX 0
/* NOTE: this --^ is a bit hackish, but simplifies GPUVertFormat usage among functions
* private to this file - merwin
*/
static void drawArrow(ArrowDirection d, short offset, short length, short size)
{
immBegin(GPU_PRIM_LINES, 6);
switch (d) {
case LEFT:
offset = -offset;
length = -length;
size = -size;
ATTR_FALLTHROUGH;
case RIGHT:
immVertex2f(POS_INDEX, offset, 0);
immVertex2f(POS_INDEX, offset + length, 0);
immVertex2f(POS_INDEX, offset + length, 0);
immVertex2f(POS_INDEX, offset + length - size, -size);
immVertex2f(POS_INDEX, offset + length, 0);
immVertex2f(POS_INDEX, offset + length - size, size);
break;
case DOWN:
offset = -offset;
length = -length;
size = -size;
ATTR_FALLTHROUGH;
case UP:
immVertex2f(POS_INDEX, 0, offset);
immVertex2f(POS_INDEX, 0, offset + length);
immVertex2f(POS_INDEX, 0, offset + length);
immVertex2f(POS_INDEX, -size, offset + length - size);
immVertex2f(POS_INDEX, 0, offset + length);
immVertex2f(POS_INDEX, size, offset + length - size);
break;
}
immEnd();
}
static void drawArrowHead(ArrowDirection d, short size)
{
immBegin(GPU_PRIM_LINES, 4);
switch (d) {
case LEFT:
size = -size;
ATTR_FALLTHROUGH;
case RIGHT:
immVertex2f(POS_INDEX, 0, 0);
immVertex2f(POS_INDEX, -size, -size);
immVertex2f(POS_INDEX, 0, 0);
immVertex2f(POS_INDEX, -size, size);
break;
case DOWN:
size = -size;
ATTR_FALLTHROUGH;
case UP:
immVertex2f(POS_INDEX, 0, 0);
immVertex2f(POS_INDEX, -size, -size);
immVertex2f(POS_INDEX, 0, 0);
immVertex2f(POS_INDEX, size, -size);
break;
}
immEnd();
}
static void drawArc(float size, float angle_start, float angle_end, int segments)
{
float delta = (angle_end - angle_start) / segments;
float angle;
int a;
immBegin(GPU_PRIM_LINE_STRIP, segments + 1);
for (angle = angle_start, a = 0; a < segments; angle += delta, a++) {
immVertex2f(POS_INDEX, cosf(angle) * size, sinf(angle) * size);
}
immVertex2f(POS_INDEX, cosf(angle_end) * size, sinf(angle_end) * size);
immEnd();
}
2018-07-02 11:47:00 +02:00
static bool helpline_poll(bContext *C)
{
ARegion *ar = CTX_wm_region(C);
2018-05-13 06:44:03 +02:00
2019-04-22 09:19:45 +10:00
if (ar && ar->regiontype == RGN_TYPE_WINDOW) {
return 1;
2019-04-22 09:19:45 +10:00
}
return 0;
}
2018-12-04 10:39:03 +11:00
static void drawHelpline(bContext *UNUSED(C), int x, int y, void *customdata)
{
TransInfo *t = (TransInfo *)customdata;
if (t->helpline != HLP_NONE) {
float cent[2];
float mval[3] = {
x,
y,
0.0f,
};
float tmval[2] = {
(float)t->mval[0],
(float)t->mval[1],
};
projectFloatViewEx(t, t->center_global, cent, V3D_PROJ_TEST_CLIP_ZERO);
/* Offset the values for the area region. */
const float offset[2] = {
t->ar->winrct.xmin,
t->ar->winrct.ymin,
};
for (int i = 0; i < 2; i++) {
cent[i] += offset[i];
tmval[i] += offset[i];
}
GPU_matrix_push();
/* Dashed lines first. */
if (ELEM(t->helpline, HLP_SPRING, HLP_ANGLE)) {
const uint shdr_pos = GPU_vertformat_attr_add(
immVertexFormat(), "pos", GPU_COMP_F32, 2, GPU_FETCH_FLOAT);
UNUSED_VARS_NDEBUG(shdr_pos); /* silence warning */
BLI_assert(shdr_pos == POS_INDEX);
GPU_line_width(1.0f);
immBindBuiltinProgram(GPU_SHADER_2D_LINE_DASHED_UNIFORM_COLOR);
float viewport_size[4];
GPU_viewport_size_get_f(viewport_size);
immUniform2f("viewport_size", viewport_size[2], viewport_size[3]);
immUniform1i("colors_len", 0); /* "simple" mode */
immUniformThemeColor(TH_VIEW_OVERLAY);
immUniform1f("dash_width", 6.0f);
immUniform1f("dash_factor", 0.5f);
immBegin(GPU_PRIM_LINES, 2);
immVertex2fv(POS_INDEX, cent);
immVertex2f(POS_INDEX, tmval[0], tmval[1]);
immEnd();
immUnbindProgram();
}
/* And now, solid lines. */
uint pos = GPU_vertformat_attr_add(immVertexFormat(), "pos", GPU_COMP_F32, 2, GPU_FETCH_FLOAT);
UNUSED_VARS_NDEBUG(pos); /* silence warning */
BLI_assert(pos == POS_INDEX);
immBindBuiltinProgram(GPU_SHADER_2D_UNIFORM_COLOR);
switch (t->helpline) {
case HLP_SPRING:
immUniformThemeColor(TH_VIEW_OVERLAY);
GPU_matrix_translate_3fv(mval);
GPU_matrix_rotate_axis(-RAD2DEGF(atan2f(cent[0] - tmval[0], cent[1] - tmval[1])), 'Z');
GPU_line_width(3.0f);
drawArrow(UP, 5, 10, 5);
drawArrow(DOWN, 5, 10, 5);
break;
case HLP_HARROW:
immUniformThemeColor(TH_VIEW_OVERLAY);
GPU_matrix_translate_3fv(mval);
GPU_line_width(3.0f);
drawArrow(RIGHT, 5, 10, 5);
drawArrow(LEFT, 5, 10, 5);
break;
case HLP_VARROW:
immUniformThemeColor(TH_VIEW_OVERLAY);
GPU_matrix_translate_3fv(mval);
GPU_line_width(3.0f);
drawArrow(UP, 5, 10, 5);
drawArrow(DOWN, 5, 10, 5);
break;
case HLP_CARROW: {
/* Draw arrow based on direction defined by custom-points. */
immUniformThemeColor(TH_VIEW_OVERLAY);
GPU_matrix_translate_3fv(mval);
GPU_line_width(3.0f);
const int *data = t->mouse.data;
const float dx = data[2] - data[0], dy = data[3] - data[1];
const float angle = -atan2f(dx, dy);
GPU_matrix_push();
GPU_matrix_rotate_axis(RAD2DEGF(angle), 'Z');
drawArrow(UP, 5, 10, 5);
drawArrow(DOWN, 5, 10, 5);
GPU_matrix_pop();
break;
}
case HLP_ANGLE: {
float dx = tmval[0] - cent[0], dy = tmval[1] - cent[1];
float angle = atan2f(dy, dx);
float dist = hypotf(dx, dy);
float delta_angle = min_ff(15.0f / dist, (float)M_PI / 4.0f);
float spacing_angle = min_ff(5.0f / dist, (float)M_PI / 12.0f);
immUniformThemeColor(TH_VIEW_OVERLAY);
GPU_matrix_translate_3f(cent[0] - tmval[0] + mval[0], cent[1] - tmval[1] + mval[1], 0);
GPU_line_width(3.0f);
drawArc(dist, angle - delta_angle, angle - spacing_angle, 10);
drawArc(dist, angle + spacing_angle, angle + delta_angle, 10);
GPU_matrix_push();
GPU_matrix_translate_3f(
cosf(angle - delta_angle) * dist, sinf(angle - delta_angle) * dist, 0);
GPU_matrix_rotate_axis(RAD2DEGF(angle - delta_angle), 'Z');
drawArrowHead(DOWN, 5);
GPU_matrix_pop();
GPU_matrix_translate_3f(
cosf(angle + delta_angle) * dist, sinf(angle + delta_angle) * dist, 0);
GPU_matrix_rotate_axis(RAD2DEGF(angle + delta_angle), 'Z');
drawArrowHead(UP, 5);
break;
}
case HLP_TRACKBALL: {
unsigned char col[3], col2[3];
UI_GetThemeColor3ubv(TH_GRID, col);
GPU_matrix_translate_3fv(mval);
GPU_line_width(3.0f);
UI_make_axis_color(col, col2, 'X');
immUniformColor3ubv(col2);
drawArrow(RIGHT, 5, 10, 5);
drawArrow(LEFT, 5, 10, 5);
UI_make_axis_color(col, col2, 'Y');
immUniformColor3ubv(col2);
drawArrow(UP, 5, 10, 5);
drawArrow(DOWN, 5, 10, 5);
break;
}
}
immUnbindProgram();
GPU_matrix_pop();
}
}
static bool transinfo_show_overlay(const struct bContext *C, TransInfo *t, ARegion *ar)
{
/* Don't show overlays when not the active view and when overlay is disabled: T57139 */
bool ok = false;
if (ar == t->ar) {
ok = true;
}
else {
ScrArea *sa = CTX_wm_area(C);
if (sa->spacetype == SPACE_VIEW3D) {
View3D *v3d = sa->spacedata.first;
if ((v3d->flag2 & V3D_HIDE_OVERLAYS) == 0) {
ok = true;
}
}
}
return ok;
}
static void drawTransformView(const struct bContext *C, ARegion *ar, void *arg)
{
TransInfo *t = arg;
2018-05-13 06:44:03 +02:00
if (!transinfo_show_overlay(C, t, ar)) {
return;
}
GPU_line_width(1.0f);
drawConstraint(t);
drawPropCircle(C, t);
drawSnapping(C, t);
if (ar == t->ar) {
/* edge slide, vert slide */
drawEdgeSlide(t);
drawVertSlide(t);
/* Rotation */
drawDial3d(t);
}
}
/* just draw a little warning message in the top-right corner of the viewport
* to warn that autokeying is enabled */
static void drawAutoKeyWarning(TransInfo *UNUSED(t), ARegion *ar)
{
rcti rect;
const char *printable = IFACE_("Auto Keying On");
float printable_size[2];
int xco, yco;
ED_region_visible_rect(ar, &rect);
const int font_id = BLF_default();
BLF_width_and_height(
font_id, printable, BLF_DRAW_STR_DUMMY_MAX, &printable_size[0], &printable_size[1]);
2018-05-13 06:44:03 +02:00
xco = (rect.xmax - U.widget_unit) - (int)printable_size[0];
yco = (rect.ymax - U.widget_unit);
2018-05-13 06:44:03 +02:00
/* warning text (to clarify meaning of overlays)
* - original color was red to match the icon, but that clashes badly with a less nasty border
*/
unsigned char color[3];
UI_GetThemeColorShade3ubv(TH_TEXT_HI, -50, color);
BLF_color3ubv(font_id, color);
#ifdef WITH_INTERNATIONAL
BLF_draw_default(xco, yco, 0.0f, printable, BLF_DRAW_STR_DUMMY_MAX);
#else
BLF_draw_default_ascii(xco, yco, 0.0f, printable, BLF_DRAW_STR_DUMMY_MAX);
#endif
2018-05-13 06:44:03 +02:00
/* autokey recording icon... */
GPU_blend_set_func_separate(
GPU_SRC_ALPHA, GPU_ONE_MINUS_SRC_ALPHA, GPU_ONE, GPU_ONE_MINUS_SRC_ALPHA);
GPU_blend(true);
2018-05-13 06:44:03 +02:00
xco -= U.widget_unit;
yco -= (int)printable_size[1] / 2;
UI_icon_draw(xco, yco, ICON_REC);
2018-05-13 06:44:03 +02:00
GPU_blend(false);
}
static void drawTransformPixel(const struct bContext *C, ARegion *ar, void *arg)
2018-05-13 06:44:03 +02:00
{
TransInfo *t = arg;
if (!transinfo_show_overlay(C, t, ar)) {
return;
}
if (ar == t->ar) {
Scene *scene = t->scene;
ViewLayer *view_layer = t->view_layer;
Object *ob = OBACT(view_layer);
/* draw auto-key-framing hint in the corner
* - only draw if enabled (advanced users may be distracted/annoyed),
* for objects that will be autokeyframed (no point otherwise),
* AND only for the active region (as showing all is too overwhelming)
*/
if ((U.autokey_flag & AUTOKEY_FLAG_NOWARNING) == 0) {
if (ar == t->ar) {
if (t->flag & (T_OBJECT | T_POSE)) {
if (ob && autokeyframe_cfra_can_key(scene, &ob->id)) {
drawAutoKeyWarning(t, ar);
}
}
}
}
}
}
/**
* \see #initTransform which reads values from the operator.
*/
void saveTransform(bContext *C, TransInfo *t, wmOperator *op)
{
ToolSettings *ts = CTX_data_tool_settings(C);
int proportional = 0;
PropertyRNA *prop;
// Save back mode in case we're in the generic operator
if ((prop = RNA_struct_find_property(op->ptr, "mode"))) {
RNA_property_enum_set(op->ptr, prop, t->mode);
}
if ((prop = RNA_struct_find_property(op->ptr, "value"))) {
float values[4];
copy_v4_v4(values, (t->flag & T_AUTOVALUES) ? t->auto_values : t->values);
if (RNA_property_array_check(prop)) {
RNA_property_float_set_array(op->ptr, prop, values);
}
else {
RNA_property_float_set(op->ptr, prop, values[0]);
}
}
if (t->flag & T_PROP_EDIT_ALL) {
if (t->flag & T_PROP_EDIT) {
proportional |= PROP_EDIT_USE;
}
if (t->flag & T_PROP_CONNECTED) {
proportional |= PROP_EDIT_CONNECTED;
}
if (t->flag & T_PROP_PROJECTED) {
proportional |= PROP_EDIT_PROJECTED;
}
}
// If modal, save settings back in scene if not set as operator argument
if ((t->flag & T_MODAL) || (op->flag & OP_IS_REPEAT)) {
/* save settings if not set in operator */
/* skip saving proportional edit if it was not actually used */
if (!(t->options & CTX_NO_PET)) {
if ((prop = RNA_struct_find_property(op->ptr, "use_proportional_edit")) &&
!RNA_property_is_set(op->ptr, prop)) {
2019-04-22 09:19:45 +10:00
if (t->spacetype == SPACE_GRAPH) {
ts->proportional_fcurve = proportional;
2019-04-22 09:19:45 +10:00
}
else if (t->spacetype == SPACE_ACTION) {
ts->proportional_action = proportional;
2019-04-22 09:19:45 +10:00
}
else if (t->obedit_type != -1) {
ts->proportional_edit = proportional;
2019-04-22 09:19:45 +10:00
}
else if (t->options & CTX_MASK) {
ts->proportional_mask = proportional != 0;
2019-04-22 09:19:45 +10:00
}
else {
ts->proportional_objects = proportional != 0;
2019-04-22 09:19:45 +10:00
}
}
if ((prop = RNA_struct_find_property(op->ptr, "proportional_size"))) {
ts->proportional_size = RNA_property_is_set(op->ptr, prop) ?
RNA_property_float_get(op->ptr, prop) :
t->prop_size;
}
if ((prop = RNA_struct_find_property(op->ptr, "proportional_edit_falloff")) &&
!RNA_property_is_set(op->ptr, prop)) {
ts->prop_mode = t->prop_mode;
}
}
/* do we check for parameter? */
if (transformModeUseSnap(t)) {
if (t->modifiers & MOD_SNAP) {
ts->snap_flag |= SCE_SNAP;
}
else {
ts->snap_flag &= ~SCE_SNAP;
}
}
if (t->spacetype == SPACE_VIEW3D) {
if ((prop = RNA_struct_find_property(op->ptr, "orient_type")) &&
!RNA_property_is_set(op->ptr, prop) &&
(t->orientation.user != V3D_ORIENT_CUSTOM_MATRIX)) {
TransformOrientationSlot *orient_slot = &t->scene->orientation_slots[SCE_ORIENT_DEFAULT];
orient_slot->type = t->orientation.user;
BLI_assert(((orient_slot->index_custom == -1) && (t->orientation.custom == NULL)) ||
(BKE_scene_transform_orientation_get_index(t->scene, t->orientation.custom) ==
orient_slot->index_custom));
}
}
}
if ((prop = RNA_struct_find_property(op->ptr, "proportional"))) {
RNA_property_enum_set(op->ptr, prop, proportional);
RNA_enum_set(op->ptr, "proportional_edit_falloff", t->prop_mode);
RNA_float_set(op->ptr, "proportional_size", t->prop_size);
}
if ((prop = RNA_struct_find_property(op->ptr, "mirror"))) {
RNA_property_boolean_set(op->ptr, prop, (t->flag & T_NO_MIRROR) == 0);
}
/* Orientation used for redo. */
const bool use_orient_axis = (t->orient_matrix_is_set &&
(RNA_struct_find_property(op->ptr, "orient_axis") != NULL));
short orientation;
if (t->con.mode & CON_APPLY) {
orientation = t->con.orientation;
if (orientation == V3D_ORIENT_CUSTOM) {
const int orientation_index_custom = BKE_scene_transform_orientation_get_index(
t->scene, t->orientation.custom);
/* Maybe we need a t->con.custom_orientation?
* Seems like it would always match t->orientation.custom. */
orientation = V3D_ORIENT_CUSTOM + orientation_index_custom;
BLI_assert(orientation >= V3D_ORIENT_CUSTOM);
}
}
else if ((t->orientation.user == V3D_ORIENT_CUSTOM_MATRIX) &&
(prop = RNA_struct_find_property(op->ptr, "orient_matrix_type"))) {
orientation = RNA_property_enum_get(op->ptr, prop);
}
else if (use_orient_axis) {
/* We're not using an orientation, use the fallback. */
orientation = t->orientation.unset;
}
else {
orientation = V3D_ORIENT_GLOBAL;
}
if ((prop = RNA_struct_find_property(op->ptr, "orient_axis"))) {
if (t->flag & T_MODAL) {
if (t->con.mode & CON_APPLY) {
int orient_axis = constraintModeToIndex(t);
if (orient_axis != -1) {
RNA_property_enum_set(op->ptr, prop, orient_axis);
}
}
else {
RNA_property_enum_set(op->ptr, prop, t->orient_axis);
}
}
}
if ((prop = RNA_struct_find_property(op->ptr, "orient_axis_ortho"))) {
if (t->flag & T_MODAL) {
RNA_property_enum_set(op->ptr, prop, t->orient_axis_ortho);
}
}
if ((prop = RNA_struct_find_property(op->ptr, "orient_matrix"))) {
if (t->flag & T_MODAL) {
if (orientation != V3D_ORIENT_CUSTOM_MATRIX) {
if (t->flag & T_MODAL) {
RNA_enum_set(op->ptr, "orient_matrix_type", orientation);
}
}
if (t->con.mode & CON_APPLY) {
RNA_float_set_array(op->ptr, "orient_matrix", &t->con.mtx[0][0]);
}
else if (use_orient_axis) {
RNA_float_set_array(op->ptr, "orient_matrix", &t->orient_matrix[0][0]);
}
else {
RNA_float_set_array(op->ptr, "orient_matrix", &t->spacemtx[0][0]);
}
}
}
if ((prop = RNA_struct_find_property(op->ptr, "orient_type"))) {
/* constraint orientation can be global, even if user selects something else
* so use the orientation in the constraint if set */
/* Use 'orient_matrix' instead. */
if (t->flag & T_MODAL) {
if (orientation != V3D_ORIENT_CUSTOM_MATRIX) {
RNA_property_enum_set(op->ptr, prop, orientation);
}
}
}
if ((prop = RNA_struct_find_property(op->ptr, "constraint_axis"))) {
bool constraint_axis[3] = {false, false, false};
if (t->flag & T_MODAL) {
/* Only set if needed, so we can hide in the UI when nothing is set.
* See 'transform_poll_property'. */
if (t->con.mode & CON_APPLY) {
if (t->con.mode & CON_AXIS0) {
constraint_axis[0] = true;
}
if (t->con.mode & CON_AXIS1) {
constraint_axis[1] = true;
}
if (t->con.mode & CON_AXIS2) {
constraint_axis[2] = true;
}
}
if (ELEM(true, UNPACK3(constraint_axis))) {
RNA_property_boolean_set_array(op->ptr, prop, constraint_axis);
}
}
}
{
const char *prop_id = NULL;
bool prop_state = true;
if (t->mode == TFM_SHRINKFATTEN) {
prop_id = "use_even_offset";
prop_state = false;
}
if (prop_id && (prop = RNA_struct_find_property(op->ptr, prop_id))) {
RNA_property_boolean_set(op->ptr, prop, ((t->flag & T_ALT_TRANSFORM) == 0) == prop_state);
}
}
if ((prop = RNA_struct_find_property(op->ptr, "correct_uv"))) {
RNA_property_boolean_set(
op->ptr, prop, (t->settings->uvcalc_flag & UVCALC_TRANSFORM_CORRECT) != 0);
}
if (t->mode == TFM_SHEAR) {
prop = RNA_struct_find_property(op->ptr, "shear_axis");
t->custom.mode.data = POINTER_FROM_INT(RNA_property_enum_get(op->ptr, prop));
RNA_property_enum_set(op->ptr, prop, POINTER_AS_INT(t->custom.mode.data));
}
}
/**
* \note caller needs to free 't' on a 0 return
* \warning \a event might be NULL (when tweaking from redo panel)
* \see #saveTransform which writes these values back.
*/
bool initTransform(bContext *C, TransInfo *t, wmOperator *op, const wmEvent *event, int mode)
{
int options = 0;
PropertyRNA *prop;
t->context = C;
/* added initialize, for external calls to set stuff in TransInfo, like undo string */
t->state = TRANS_STARTING;
if ((prop = RNA_struct_find_property(op->ptr, "cursor_transform")) &&
RNA_property_is_set(op->ptr, prop)) {
if (RNA_property_boolean_get(op->ptr, prop)) {
options |= CTX_CURSOR;
}
}
if ((prop = RNA_struct_find_property(op->ptr, "texture_space")) &&
RNA_property_is_set(op->ptr, prop)) {
if (RNA_property_boolean_get(op->ptr, prop)) {
options |= CTX_TEXTURE;
}
}
if ((prop = RNA_struct_find_property(op->ptr, "gpencil_strokes")) &&
RNA_property_is_set(op->ptr, prop)) {
if (RNA_property_boolean_get(op->ptr, prop)) {
options |= CTX_GPENCIL_STROKES;
}
}
t->options = options;
t->mode = mode;
/* Needed to translate tweak events to mouse buttons. */
t->launch_event = event ? WM_userdef_event_type_from_keymap_type(event->type) : -1;
2019-04-17 08:44:58 +02:00
/* XXX Remove this when wm_operator_call_internal doesn't use window->eventstate
* (which can have type = 0) */
/* For gizmo only, so assume LEFTMOUSE. */
if (t->launch_event == 0) {
t->launch_event = LEFTMOUSE;
}
unit_m3(t->spacemtx);
initTransInfo(C, t, op, event);
initTransformOrientation(C, t);
if (t->spacetype == SPACE_VIEW3D) {
t->draw_handle_apply = ED_region_draw_cb_activate(
t->ar->type, drawTransformApply, t, REGION_DRAW_PRE_VIEW);
t->draw_handle_view = ED_region_draw_cb_activate(
t->ar->type, drawTransformView, t, REGION_DRAW_POST_VIEW);
t->draw_handle_pixel = ED_region_draw_cb_activate(
t->ar->type, drawTransformPixel, t, REGION_DRAW_POST_PIXEL);
t->draw_handle_cursor = WM_paint_cursor_activate(
CTX_wm_manager(C), SPACE_TYPE_ANY, RGN_TYPE_ANY, helpline_poll, drawHelpline, t);
}
else if (t->spacetype == SPACE_IMAGE) {
t->draw_handle_view = ED_region_draw_cb_activate(
t->ar->type, drawTransformView, t, REGION_DRAW_POST_VIEW);
t->draw_handle_cursor = WM_paint_cursor_activate(
CTX_wm_manager(C), SPACE_TYPE_ANY, RGN_TYPE_ANY, helpline_poll, drawHelpline, t);
}
else if (t->spacetype == SPACE_CLIP) {
t->draw_handle_view = ED_region_draw_cb_activate(
t->ar->type, drawTransformView, t, REGION_DRAW_POST_VIEW);
t->draw_handle_cursor = WM_paint_cursor_activate(
CTX_wm_manager(C), SPACE_TYPE_ANY, RGN_TYPE_ANY, helpline_poll, drawHelpline, t);
}
else if (t->spacetype == SPACE_NODE) {
t->draw_handle_view = ED_region_draw_cb_activate(
t->ar->type, drawTransformView, t, REGION_DRAW_POST_VIEW);
t->draw_handle_cursor = WM_paint_cursor_activate(
CTX_wm_manager(C), SPACE_TYPE_ANY, RGN_TYPE_ANY, helpline_poll, drawHelpline, t);
}
else if (t->spacetype == SPACE_GRAPH) {
t->draw_handle_view = ED_region_draw_cb_activate(
t->ar->type, drawTransformView, t, REGION_DRAW_POST_VIEW);
t->draw_handle_cursor = WM_paint_cursor_activate(
CTX_wm_manager(C), SPACE_TYPE_ANY, RGN_TYPE_ANY, helpline_poll, drawHelpline, t);
}
else if (t->spacetype == SPACE_ACTION) {
t->draw_handle_view = ED_region_draw_cb_activate(
t->ar->type, drawTransformView, t, REGION_DRAW_POST_VIEW);
t->draw_handle_cursor = WM_paint_cursor_activate(
CTX_wm_manager(C), SPACE_TYPE_ANY, RGN_TYPE_ANY, helpline_poll, drawHelpline, t);
}
createTransData(C, t); // make TransData structs from selection
if (t->data_len_all == 0) {
postTrans(C, t);
return 0;
}
if (event) {
/* keymap for shortcut header prints */
t->keymap = WM_keymap_active(CTX_wm_manager(C), op->type->modalkeymap);
/* Stupid code to have Ctrl-Click on gizmo work ok.
*
* Do this only for translation/rotation/resize because only these
* modes are available from gizmo and doing such check could
* lead to keymap conflicts for other modes (see #31584)
*/
if (ELEM(mode, TFM_TRANSLATION, TFM_ROTATION, TFM_RESIZE)) {
wmKeyMapItem *kmi;
for (kmi = t->keymap->items.first; kmi; kmi = kmi->next) {
if (kmi->flag & KMI_INACTIVE) {
continue;
}
if (kmi->propvalue == TFM_MODAL_SNAP_INV_ON && kmi->val == KM_PRESS) {
if ((ELEM(kmi->type, LEFTCTRLKEY, RIGHTCTRLKEY) && event->ctrl) ||
(ELEM(kmi->type, LEFTSHIFTKEY, RIGHTSHIFTKEY) && event->shift) ||
(ELEM(kmi->type, LEFTALTKEY, RIGHTALTKEY) && event->alt) ||
((kmi->type == OSKEY) && event->oskey)) {
t->modifiers |= MOD_SNAP_INVERT;
}
break;
}
}
}
}
initSnapping(t, op); // Initialize snapping data AFTER mode flags
initSnapSpatial(t, t->snap_spatial);
/* EVIL! posemode code can switch translation to rotate when 1 bone is selected.
* will be removed (ton) */
/* EVIL2: we gave as argument also texture space context bit... was cleared */
/* EVIL3: extend mode for animation editors also switches modes...
* but is best way to avoid duplicate code */
mode = t->mode;
calculatePropRatio(t);
calculateCenter(t);
/* Overwrite initial values if operator supplied a non-null vector.
*
* Run before init functions so 'values_modal_offset' can be applied on mouse input.
*/
BLI_assert(is_zero_v4(t->values_modal_offset));
if ((prop = RNA_struct_find_property(op->ptr, "value")) && RNA_property_is_set(op->ptr, prop)) {
float values[4] = {0}; /* in case value isn't length 4, avoid uninitialized memory */
if (RNA_property_array_check(prop)) {
RNA_float_get_array(op->ptr, "value", values);
}
else {
values[0] = RNA_float_get(op->ptr, "value");
}
copy_v4_v4(t->values, values);
if (t->flag & T_MODAL) {
copy_v4_v4(t->values_modal_offset, values);
t->redraw = TREDRAW_HARD;
}
else {
copy_v4_v4(t->auto_values, values);
t->flag |= T_AUTOVALUES;
}
}
if (event) {
/* Initialize accurate transform to settings requested by keymap. */
bool use_accurate = false;
if ((prop = RNA_struct_find_property(op->ptr, "use_accurate")) &&
RNA_property_is_set(op->ptr, prop)) {
if (RNA_property_boolean_get(op->ptr, prop)) {
use_accurate = true;
}
}
initMouseInput(t, &t->mouse, t->center2d, event->mval, use_accurate);
}
switch (mode) {
case TFM_TRANSLATION:
initTranslation(t);
break;
case TFM_ROTATION:
initRotation(t);
break;
case TFM_RESIZE:
initResize(t);
break;
case TFM_SKIN_RESIZE:
initSkinResize(t);
break;
case TFM_TOSPHERE:
initToSphere(t);
break;
case TFM_SHEAR:
prop = RNA_struct_find_property(op->ptr, "shear_axis");
t->custom.mode.data = POINTER_FROM_INT(RNA_property_enum_get(op->ptr, prop));
initShear(t);
break;
case TFM_BEND:
initBend(t);
break;
case TFM_SHRINKFATTEN:
initShrinkFatten(t);
break;
case TFM_TILT:
initTilt(t);
break;
case TFM_CURVE_SHRINKFATTEN:
initCurveShrinkFatten(t);
break;
case TFM_MASK_SHRINKFATTEN:
initMaskShrinkFatten(t);
break;
case TFM_GPENCIL_SHRINKFATTEN:
initGPShrinkFatten(t);
break;
case TFM_TRACKBALL:
initTrackball(t);
break;
case TFM_PUSHPULL:
initPushPull(t);
break;
case TFM_CREASE:
initCrease(t);
break;
case TFM_BONESIZE: { /* used for both B-Bone width (bonesize) as for deform-dist (envelope) */
/* Note: we have to pick one, use the active object. */
TransDataContainer *tc = TRANS_DATA_CONTAINER_FIRST_OK(t);
bArmature *arm = tc->poseobj->data;
if (arm->drawtype == ARM_ENVELOPE) {
initBoneEnvelope(t);
t->mode = TFM_BONE_ENVELOPE_DIST;
}
else {
initBoneSize(t);
}
break;
}
case TFM_BONE_ENVELOPE:
initBoneEnvelope(t);
break;
case TFM_BONE_ENVELOPE_DIST:
initBoneEnvelope(t);
t->mode = TFM_BONE_ENVELOPE_DIST;
break;
case TFM_EDGE_SLIDE:
case TFM_VERT_SLIDE: {
const bool use_even = (op ? RNA_boolean_get(op->ptr, "use_even") : false);
const bool flipped = (op ? RNA_boolean_get(op->ptr, "flipped") : false);
const bool use_clamp = (op ? RNA_boolean_get(op->ptr, "use_clamp") : true);
if (mode == TFM_EDGE_SLIDE) {
const bool use_double_side = (op ? !RNA_boolean_get(op->ptr, "single_side") : true);
initEdgeSlide_ex(t, use_double_side, use_even, flipped, use_clamp);
}
else {
initVertSlide_ex(t, use_even, flipped, use_clamp);
}
break;
}
case TFM_BONE_ROLL:
initBoneRoll(t);
break;
case TFM_TIME_TRANSLATE:
initTimeTranslate(t);
break;
case TFM_TIME_SLIDE:
initTimeSlide(t);
break;
case TFM_TIME_SCALE:
initTimeScale(t);
break;
case TFM_TIME_DUPLICATE:
/* same as TFM_TIME_EXTEND, but we need the mode info for later
* so that duplicate-culling will work properly
*/
2019-04-22 09:19:45 +10:00
if (ELEM(t->spacetype, SPACE_GRAPH, SPACE_NLA)) {
initTranslation(t);
2019-04-22 09:19:45 +10:00
}
else {
initTimeTranslate(t);
2019-04-22 09:19:45 +10:00
}
t->mode = mode;
break;
case TFM_TIME_EXTEND:
/* now that transdata has been made, do like for TFM_TIME_TRANSLATE (for most Animation
* Editors because they have only 1D transforms for time values) or TFM_TRANSLATION
* (for Graph/NLA Editors only since they uses 'standard' transforms to get 2D movement)
* depending on which editor this was called from
*/
2019-04-22 09:19:45 +10:00
if (ELEM(t->spacetype, SPACE_GRAPH, SPACE_NLA)) {
initTranslation(t);
2019-04-22 09:19:45 +10:00
}
else {
initTimeTranslate(t);
2019-04-22 09:19:45 +10:00
}
break;
case TFM_BAKE_TIME:
initBakeTime(t);
break;
case TFM_MIRROR:
initMirror(t);
break;
case TFM_BWEIGHT:
initBevelWeight(t);
break;
case TFM_ALIGN:
initAlign(t);
break;
case TFM_SEQ_SLIDE:
initSeqSlide(t);
break;
case TFM_NORMAL_ROTATION:
initNormalRotation(t);
break;
case TFM_GPENCIL_OPACITY:
initGPOpacity(t);
break;
}
if (t->state == TRANS_CANCEL) {
postTrans(C, t);
return 0;
}
/* Transformation axis from operator */
if ((prop = RNA_struct_find_property(op->ptr, "orient_axis")) &&
RNA_property_is_set(op->ptr, prop)) {
t->orient_axis = RNA_property_enum_get(op->ptr, prop);
}
if ((prop = RNA_struct_find_property(op->ptr, "orient_axis_ortho")) &&
RNA_property_is_set(op->ptr, prop)) {
t->orient_axis_ortho = RNA_property_enum_get(op->ptr, prop);
}
/* Constraint init from operator */
if ((t->flag & T_MODAL) ||
/* For mirror operator the constraint axes are effectively the values. */
(RNA_struct_find_property(op->ptr, "values") == NULL)) {
if ((prop = RNA_struct_find_property(op->ptr, "constraint_axis")) &&
RNA_property_is_set(op->ptr, prop)) {
bool constraint_axis[3];
RNA_property_boolean_get_array(op->ptr, prop, constraint_axis);
if (constraint_axis[0] || constraint_axis[1] || constraint_axis[2]) {
t->con.mode |= CON_APPLY;
if (constraint_axis[0]) {
t->con.mode |= CON_AXIS0;
}
if (constraint_axis[1]) {
t->con.mode |= CON_AXIS1;
}
if (constraint_axis[2]) {
t->con.mode |= CON_AXIS2;
}
setUserConstraint(t, t->orientation.user, t->con.mode, "%s");
}
}
}
else {
/* So we can adjust in non global orientation. */
if (t->orientation.user != V3D_ORIENT_GLOBAL) {
t->con.mode |= CON_APPLY | CON_AXIS0 | CON_AXIS1 | CON_AXIS2;
setUserConstraint(t, t->orientation.user, t->con.mode, "%s");
}
}
2019-04-17 08:44:58 +02:00
/* Don't write into the values when non-modal because they are already set from operator redo
* values. */
if (t->flag & T_MODAL) {
/* Setup the mouse input with initial values. */
applyMouseInput(t, &t->mouse, t->mouse.imval, t->values);
}
if ((prop = RNA_struct_find_property(op->ptr, "preserve_clnor"))) {
if ((t->flag & T_EDIT) && t->obedit_type == OB_MESH) {
FOREACH_TRANS_DATA_CONTAINER (t, tc) {
if ((((Mesh *)(tc->obedit->data))->flag & ME_AUTOSMOOTH)) {
BMEditMesh *em = NULL; // BKE_editmesh_from_object(t->obedit);
bool do_skip = false;
/* Currently only used for two of three most frequent transform ops,
* can include more ops.
* Note that scaling cannot be included here,
* non-uniform scaling will affect normals. */
if (ELEM(t->mode, TFM_TRANSLATION, TFM_ROTATION)) {
if (em->bm->totvertsel == em->bm->totvert) {
/* No need to invalidate if whole mesh is selected. */
do_skip = true;
}
}
if (t->flag & T_MODAL) {
RNA_property_boolean_set(op->ptr, prop, false);
}
else if (!do_skip) {
const bool preserve_clnor = RNA_property_boolean_get(op->ptr, prop);
if (preserve_clnor) {
BKE_editmesh_lnorspace_update(em);
t->flag |= T_CLNOR_REBUILD;
}
BM_lnorspace_invalidate(em->bm, true);
}
}
}
}
}
t->context = NULL;
return 1;
}
void transformApply(bContext *C, TransInfo *t)
{
t->context = C;
if ((t->redraw & TREDRAW_HARD) || (t->draw_handle_apply == NULL && (t->redraw & TREDRAW_SOFT))) {
selectConstraint(t);
if (t->transform) {
t->transform(t, t->mval); // calls recalcData()
viewRedrawForce(C, t);
}
t->redraw = TREDRAW_NOTHING;
}
else if (t->redraw & TREDRAW_SOFT) {
viewRedrawForce(C, t);
}
/* If auto confirm is on, break after one pass */
if (t->options & CTX_AUTOCONFIRM) {
t->state = TRANS_CONFIRM;
}
t->context = NULL;
}
static void drawTransformApply(const bContext *C, ARegion *UNUSED(ar), void *arg)
{
TransInfo *t = arg;
if (t->redraw & TREDRAW_SOFT) {
t->redraw |= TREDRAW_HARD;
transformApply((bContext *)C, t);
}
}
int transformEnd(bContext *C, TransInfo *t)
{
int exit_code = OPERATOR_RUNNING_MODAL;
t->context = C;
if (t->state != TRANS_STARTING && t->state != TRANS_RUNNING) {
/* handle restoring objects */
if (t->state == TRANS_CANCEL) {
/* exception, edge slide transformed UVs too */
if (t->mode == TFM_EDGE_SLIDE) {
doEdgeSlide(t, 0.0f);
}
else if (t->mode == TFM_VERT_SLIDE) {
doVertSlide(t, 0.0f);
}
2018-05-13 06:44:03 +02:00
exit_code = OPERATOR_CANCELLED;
restoreTransObjects(t); // calls recalcData()
}
else {
if (t->flag & T_CLNOR_REBUILD) {
FOREACH_TRANS_DATA_CONTAINER (t, tc) {
BMEditMesh *em = BKE_editmesh_from_object(tc->obedit);
BM_lnorspace_rebuild(em->bm, true);
}
}
exit_code = OPERATOR_FINISHED;
}
/* aftertrans does insert keyframes, and clears base flags; doesn't read transdata */
special_aftertrans_update(C, t);
/* free data */
postTrans(C, t);
/* send events out for redraws */
viewRedrawPost(C, t);
viewRedrawForce(C, t);
}
t->context = NULL;
return exit_code;
}
/* ************************** TRANSFORM LOCKS **************************** */
static void protectedTransBits(short protectflag, float vec[3])
{
2019-04-22 09:19:45 +10:00
if (protectflag & OB_LOCK_LOCX) {
vec[0] = 0.0f;
2019-04-22 09:19:45 +10:00
}
if (protectflag & OB_LOCK_LOCY) {
vec[1] = 0.0f;
2019-04-22 09:19:45 +10:00
}
if (protectflag & OB_LOCK_LOCZ) {
vec[2] = 0.0f;
2019-04-22 09:19:45 +10:00
}
}
static void protectedSizeBits(short protectflag, float size[3])
{
2019-04-22 09:19:45 +10:00
if (protectflag & OB_LOCK_SCALEX) {
size[0] = 1.0f;
2019-04-22 09:19:45 +10:00
}
if (protectflag & OB_LOCK_SCALEY) {
size[1] = 1.0f;
2019-04-22 09:19:45 +10:00
}
if (protectflag & OB_LOCK_SCALEZ) {
size[2] = 1.0f;
2019-04-22 09:19:45 +10:00
}
}
static void protectedRotateBits(short protectflag, float eul[3], const float oldeul[3])
{
2019-04-22 09:19:45 +10:00
if (protectflag & OB_LOCK_ROTX) {
eul[0] = oldeul[0];
2019-04-22 09:19:45 +10:00
}
if (protectflag & OB_LOCK_ROTY) {
eul[1] = oldeul[1];
2019-04-22 09:19:45 +10:00
}
if (protectflag & OB_LOCK_ROTZ) {
eul[2] = oldeul[2];
2019-04-22 09:19:45 +10:00
}
}
2009-09-16 17:43:09 +00:00
/* this function only does the delta rotation */
/* axis-angle is usually internally stored as quats... */
static void protectedAxisAngleBits(
short protectflag, float axis[3], float *angle, float oldAxis[3], float oldAngle)
{
/* check that protection flags are set */
2019-04-22 09:19:45 +10:00
if ((protectflag & (OB_LOCK_ROTX | OB_LOCK_ROTY | OB_LOCK_ROTZ | OB_LOCK_ROTW)) == 0) {
return;
2019-04-22 09:19:45 +10:00
}
if (protectflag & OB_LOCK_ROT4D) {
/* axis-angle getting limited as 4D entities that they are... */
2019-04-22 09:19:45 +10:00
if (protectflag & OB_LOCK_ROTW) {
*angle = oldAngle;
2019-04-22 09:19:45 +10:00
}
if (protectflag & OB_LOCK_ROTX) {
axis[0] = oldAxis[0];
2019-04-22 09:19:45 +10:00
}
if (protectflag & OB_LOCK_ROTY) {
axis[1] = oldAxis[1];
2019-04-22 09:19:45 +10:00
}
if (protectflag & OB_LOCK_ROTZ) {
axis[2] = oldAxis[2];
2019-04-22 09:19:45 +10:00
}
}
else {
/* axis-angle get limited with euler... */
float eul[3], oldeul[3];
axis_angle_to_eulO(eul, EULER_ORDER_DEFAULT, axis, *angle);
axis_angle_to_eulO(oldeul, EULER_ORDER_DEFAULT, oldAxis, oldAngle);
2019-04-22 09:19:45 +10:00
if (protectflag & OB_LOCK_ROTX) {
eul[0] = oldeul[0];
2019-04-22 09:19:45 +10:00
}
if (protectflag & OB_LOCK_ROTY) {
eul[1] = oldeul[1];
2019-04-22 09:19:45 +10:00
}
if (protectflag & OB_LOCK_ROTZ) {
eul[2] = oldeul[2];
2019-04-22 09:19:45 +10:00
}
eulO_to_axis_angle(axis, angle, eul, EULER_ORDER_DEFAULT);
2019-04-17 08:44:58 +02:00
/* When converting to axis-angle,
* we need a special exception for the case when there is no axis. */
if (IS_EQF(axis[0], axis[1]) && IS_EQF(axis[1], axis[2])) {
/* for now, rotate around y-axis then (so that it simply becomes the roll) */
axis[1] = 1.0f;
}
}
2009-09-16 17:43:09 +00:00
}
2009-09-16 17:43:09 +00:00
/* this function only does the delta rotation */
static void protectedQuaternionBits(short protectflag, float quat[4], const float oldquat[4])
2009-09-16 17:43:09 +00:00
{
/* check that protection flags are set */
2019-04-22 09:19:45 +10:00
if ((protectflag & (OB_LOCK_ROTX | OB_LOCK_ROTY | OB_LOCK_ROTZ | OB_LOCK_ROTW)) == 0) {
return;
2019-04-22 09:19:45 +10:00
}
if (protectflag & OB_LOCK_ROT4D) {
/* quaternions getting limited as 4D entities that they are... */
2019-04-22 09:19:45 +10:00
if (protectflag & OB_LOCK_ROTW) {
quat[0] = oldquat[0];
2019-04-22 09:19:45 +10:00
}
if (protectflag & OB_LOCK_ROTX) {
quat[1] = oldquat[1];
2019-04-22 09:19:45 +10:00
}
if (protectflag & OB_LOCK_ROTY) {
quat[2] = oldquat[2];
2019-04-22 09:19:45 +10:00
}
if (protectflag & OB_LOCK_ROTZ) {
quat[3] = oldquat[3];
2019-04-22 09:19:45 +10:00
}
}
else {
/* quaternions get limited with euler... (compatibility mode) */
float eul[3], oldeul[3], nquat[4], noldquat[4];
float qlen;
qlen = normalize_qt_qt(nquat, quat);
normalize_qt_qt(noldquat, oldquat);
quat_to_eul(eul, nquat);
quat_to_eul(oldeul, noldquat);
2019-04-22 09:19:45 +10:00
if (protectflag & OB_LOCK_ROTX) {
eul[0] = oldeul[0];
2019-04-22 09:19:45 +10:00
}
if (protectflag & OB_LOCK_ROTY) {
eul[1] = oldeul[1];
2019-04-22 09:19:45 +10:00
}
if (protectflag & OB_LOCK_ROTZ) {
eul[2] = oldeul[2];
2019-04-22 09:19:45 +10:00
}
eul_to_quat(quat, eul);
/* restore original quat size */
mul_qt_fl(quat, qlen);
/* quaternions flip w sign to accumulate rotations correctly */
if ((nquat[0] < 0.0f && quat[0] > 0.0f) || (nquat[0] > 0.0f && quat[0] < 0.0f)) {
mul_qt_fl(quat, -1.0f);
}
}
}
/* ******************* TRANSFORM LIMITS ********************** */
static void constraintTransLim(TransInfo *t, TransData *td)
{
if (td->con) {
const bConstraintTypeInfo *ctiLoc = BKE_constraint_typeinfo_from_type(
CONSTRAINT_TYPE_LOCLIMIT);
const bConstraintTypeInfo *ctiDist = BKE_constraint_typeinfo_from_type(
CONSTRAINT_TYPE_DISTLIMIT);
bConstraintOb cob = {NULL};
bConstraint *con;
float ctime = (float)(t->scene->r.cfra);
/* Make a temporary bConstraintOb for using these limit constraints
* - they only care that cob->matrix is correctly set ;-)
* - current space should be local
*/
unit_m4(cob.matrix);
copy_v3_v3(cob.matrix[3], td->loc);
/* Evaluate valid constraints */
for (con = td->con; con; con = con->next) {
const bConstraintTypeInfo *cti = NULL;
ListBase targets = {NULL, NULL};
/* only consider constraint if enabled */
2019-04-22 09:19:45 +10:00
if (con->flag & (CONSTRAINT_DISABLE | CONSTRAINT_OFF)) {
continue;
2019-04-22 09:19:45 +10:00
}
if (con->enforce == 0.0f) {
continue;
2019-04-22 09:19:45 +10:00
}
/* only use it if it's tagged for this purpose (and the right type) */
if (con->type == CONSTRAINT_TYPE_LOCLIMIT) {
bLocLimitConstraint *data = con->data;
2019-04-22 09:19:45 +10:00
if ((data->flag2 & LIMIT_TRANSFORM) == 0) {
continue;
2019-04-22 09:19:45 +10:00
}
cti = ctiLoc;
}
else if (con->type == CONSTRAINT_TYPE_DISTLIMIT) {
bDistLimitConstraint *data = con->data;
2019-04-22 09:19:45 +10:00
if ((data->flag & LIMITDIST_TRANSFORM) == 0) {
continue;
2019-04-22 09:19:45 +10:00
}
cti = ctiDist;
}
if (cti) {
/* do space conversions */
if (con->ownspace == CONSTRAINT_SPACE_WORLD) {
/* just multiply by td->mtx (this should be ok) */
mul_m4_m3m4(cob.matrix, td->mtx, cob.matrix);
}
else if (con->ownspace != CONSTRAINT_SPACE_LOCAL) {
/* skip... incompatible spacetype */
continue;
}
/* get constraint targets if needed */
BKE_constraint_targets_for_solving_get(t->depsgraph, con, &cob, &targets, ctime);
/* do constraint */
cti->evaluate_constraint(con, &cob, &targets);
/* convert spaces again */
if (con->ownspace == CONSTRAINT_SPACE_WORLD) {
/* just multiply by td->smtx (this should be ok) */
mul_m4_m3m4(cob.matrix, td->smtx, cob.matrix);
}
/* free targets list */
BLI_freelistN(&targets);
}
}
/* copy results from cob->matrix */
copy_v3_v3(td->loc, cob.matrix[3]);
}
}
static void constraintob_from_transdata(bConstraintOb *cob, TransData *td)
{
/* Make a temporary bConstraintOb for use by limit constraints
* - they only care that cob->matrix is correctly set ;-)
* - current space should be local
*/
memset(cob, 0, sizeof(bConstraintOb));
if (td->ext) {
if (td->ext->rotOrder == ROT_MODE_QUAT) {
/* quats */
/* objects and bones do normalization first too, otherwise
* we don't necessarily end up with a rotation matrix, and
* then conversion back to quat gives a different result */
float quat[4];
normalize_qt_qt(quat, td->ext->quat);
quat_to_mat4(cob->matrix, quat);
}
else if (td->ext->rotOrder == ROT_MODE_AXISANGLE) {
/* axis angle */
axis_angle_to_mat4(cob->matrix, td->ext->rotAxis, *td->ext->rotAngle);
}
else {
/* eulers */
eulO_to_mat4(cob->matrix, td->ext->rot, td->ext->rotOrder);
}
}
}
static void constraintRotLim(TransInfo *UNUSED(t), TransData *td)
{
if (td->con) {
const bConstraintTypeInfo *cti = BKE_constraint_typeinfo_from_type(CONSTRAINT_TYPE_ROTLIMIT);
bConstraintOb cob;
bConstraint *con;
bool do_limit = false;
/* Evaluate valid constraints */
for (con = td->con; con; con = con->next) {
/* only consider constraint if enabled */
2019-04-22 09:19:45 +10:00
if (con->flag & (CONSTRAINT_DISABLE | CONSTRAINT_OFF)) {
continue;
2019-04-22 09:19:45 +10:00
}
if (con->enforce == 0.0f) {
continue;
2019-04-22 09:19:45 +10:00
}
/* we're only interested in Limit-Rotation constraints */
if (con->type == CONSTRAINT_TYPE_ROTLIMIT) {
bRotLimitConstraint *data = con->data;
/* only use it if it's tagged for this purpose */
2019-04-22 09:19:45 +10:00
if ((data->flag2 & LIMIT_TRANSFORM) == 0) {
continue;
2019-04-22 09:19:45 +10:00
}
/* skip incompatible spacetypes */
2019-04-22 09:19:45 +10:00
if (!ELEM(con->ownspace, CONSTRAINT_SPACE_WORLD, CONSTRAINT_SPACE_LOCAL)) {
continue;
2019-04-22 09:19:45 +10:00
}
/* only do conversion if necessary, to preserve quats and eulers */
if (do_limit == false) {
constraintob_from_transdata(&cob, td);
do_limit = true;
}
/* do space conversions */
if (con->ownspace == CONSTRAINT_SPACE_WORLD) {
/* just multiply by td->mtx (this should be ok) */
mul_m4_m3m4(cob.matrix, td->mtx, cob.matrix);
}
/* do constraint */
cti->evaluate_constraint(con, &cob, NULL);
/* convert spaces again */
if (con->ownspace == CONSTRAINT_SPACE_WORLD) {
/* just multiply by td->smtx (this should be ok) */
mul_m4_m3m4(cob.matrix, td->smtx, cob.matrix);
}
}
}
if (do_limit) {
/* copy results from cob->matrix */
if (td->ext->rotOrder == ROT_MODE_QUAT) {
/* quats */
mat4_to_quat(td->ext->quat, cob.matrix);
}
else if (td->ext->rotOrder == ROT_MODE_AXISANGLE) {
/* axis angle */
mat4_to_axis_angle(td->ext->rotAxis, td->ext->rotAngle, cob.matrix);
}
else {
/* eulers */
mat4_to_eulO(td->ext->rot, td->ext->rotOrder, cob.matrix);
}
}
}
}
static void constraintSizeLim(TransInfo *t, TransData *td)
{
if (td->con && td->ext) {
const bConstraintTypeInfo *cti = BKE_constraint_typeinfo_from_type(CONSTRAINT_TYPE_SIZELIMIT);
bConstraintOb cob = {NULL};
bConstraint *con;
float size_sign[3], size_abs[3];
int i;
/* Make a temporary bConstraintOb for using these limit constraints
* - they only care that cob->matrix is correctly set ;-)
* - current space should be local
*/
if ((td->flag & TD_SINGLESIZE) && !(t->con.mode & CON_APPLY)) {
/* scale val and reset size */
return; // TODO: fix this case
}
else {
/* Reset val if SINGLESIZE but using a constraint */
2019-04-22 09:19:45 +10:00
if (td->flag & TD_SINGLESIZE) {
return;
2019-04-22 09:19:45 +10:00
}
/* separate out sign to apply back later */
for (i = 0; i < 3; i++) {
size_sign[i] = signf(td->ext->size[i]);
size_abs[i] = fabsf(td->ext->size[i]);
}
size_to_mat4(cob.matrix, size_abs);
}
/* Evaluate valid constraints */
for (con = td->con; con; con = con->next) {
/* only consider constraint if enabled */
2019-04-22 09:19:45 +10:00
if (con->flag & (CONSTRAINT_DISABLE | CONSTRAINT_OFF)) {
continue;
2019-04-22 09:19:45 +10:00
}
if (con->enforce == 0.0f) {
continue;
2019-04-22 09:19:45 +10:00
}
/* we're only interested in Limit-Scale constraints */
if (con->type == CONSTRAINT_TYPE_SIZELIMIT) {
bSizeLimitConstraint *data = con->data;
/* only use it if it's tagged for this purpose */
2019-04-22 09:19:45 +10:00
if ((data->flag2 & LIMIT_TRANSFORM) == 0) {
continue;
2019-04-22 09:19:45 +10:00
}
/* do space conversions */
if (con->ownspace == CONSTRAINT_SPACE_WORLD) {
/* just multiply by td->mtx (this should be ok) */
mul_m4_m3m4(cob.matrix, td->mtx, cob.matrix);
}
else if (con->ownspace != CONSTRAINT_SPACE_LOCAL) {
/* skip... incompatible spacetype */
continue;
}
/* do constraint */
cti->evaluate_constraint(con, &cob, NULL);
/* convert spaces again */
if (con->ownspace == CONSTRAINT_SPACE_WORLD) {
/* just multiply by td->smtx (this should be ok) */
mul_m4_m3m4(cob.matrix, td->smtx, cob.matrix);
}
}
}
/* copy results from cob->matrix */
if ((td->flag & TD_SINGLESIZE) && !(t->con.mode & CON_APPLY)) {
/* scale val and reset size */
return; // TODO: fix this case
}
else {
/* Reset val if SINGLESIZE but using a constraint */
2019-04-22 09:19:45 +10:00
if (td->flag & TD_SINGLESIZE) {
return;
2019-04-22 09:19:45 +10:00
}
/* extrace scale from matrix and apply back sign */
mat4_to_size(td->ext->size, cob.matrix);
mul_v3_v3(td->ext->size, size_sign);
}
}
}
/* -------------------------------------------------------------------- */
2013-11-20 12:14:10 +11:00
/* Transform (Bend) */
2013-11-20 12:14:10 +11:00
/** \name Transform Bend
* \{ */
2013-11-20 12:14:10 +11:00
struct BendCustomData {
/* All values are in global space. */
float warp_sta[3];
float warp_end[3];
float warp_nor[3];
float warp_tan[3];
/* for applying the mouse distance */
float warp_init_dist;
};
2013-11-20 12:14:10 +11:00
static void initBend(TransInfo *t)
{
const float mval_fl[2] = {UNPACK2(t->mval)};
const float *curs;
float tvec[3];
struct BendCustomData *data;
2018-05-13 06:44:03 +02:00
t->mode = TFM_BEND;
t->transform = Bend;
t->handleEvent = handleEventBend;
2018-05-13 06:44:03 +02:00
setInputPostFct(&t->mouse, postInputRotation);
initMouseInputMode(t, &t->mouse, INPUT_ANGLE_SPRING);
2018-05-13 06:44:03 +02:00
t->idx_max = 1;
t->num.idx_max = 1;
t->snap[0] = 0.0f;
t->snap[1] = SNAP_INCREMENTAL_ANGLE;
t->snap[2] = t->snap[1] * 0.2;
Support units in modal numinput Summary: This completly changes the way modal numinput is handled. Now, edited expression is a string, which then gets unit- and py-evaluated to get a float value. We gain many power and flexibility, but lose a few "shortcuts" like '-' to negate, or '/' to inverse (if they are really needed, we still can add them with modifiers, like e.g. ctrl-/ or so). Features: - units (cm, ", deg, etc.). - basic operations from python/BKE_unit (+, *, **, etc.), and math constants and functions (pi, sin, etc.). - you can navigate in edited value (left/right key, ctrl to move by block) and insert/delete chars, e.g. to fix a typo without having to rewrite everything. - you can go to next/previous value with (ctrl-)TAB key. - As before, hitting backspace after having deleted all leading chars will first reset the edited value to init state, and on second press, the whole "modal numinput" editing will be cancelled, going back to usual transform with mouse. Notes: - Did not touch to how values are shown in header when modal numinput is not enabled (would do that in another commit), so this is still quite inconsistent. - Added back radian support in BKE_unit. - Added arcminute/arcsecond to BKE_unit. (those unit changes affect all angle UI controls, btw, so you can now enter radians or longitude/latitude values when in degrees units). Related to T37600. Reviewers: brecht, campbellbarton, carter2422 Reviewed By: brecht, campbellbarton, carter2422 Thanks everybody! Differential Revision: http://developer.blender.org/D61
2013-12-21 17:11:43 +01:00
copy_v3_fl(t->num.val_inc, t->snap[1]);
t->num.unit_sys = t->scene->unit.system;
t->num.unit_use_radians = (t->scene->unit.system_rotation == USER_UNIT_ROT_RADIANS);
t->num.unit_type[0] = B_UNIT_ROTATION;
t->num.unit_type[1] = B_UNIT_LENGTH;
t->flag |= T_NO_CONSTRAINT;
//copy_v3_v3(t->center, ED_view3d_cursor3d_get(t->scene, t->view));
if ((t->flag & T_OVERRIDE_CENTER) == 0) {
calculateCenterCursor(t, t->center_global);
}
calculateCenterLocal(t, t->center_global);
t->val = 0.0f;
data = MEM_callocN(sizeof(*data), __func__);
curs = t->scene->cursor.location;
copy_v3_v3(data->warp_sta, curs);
ED_view3d_win_to_3d(t->sa->spacedata.first, t->ar, curs, mval_fl, data->warp_end);
copy_v3_v3(data->warp_nor, t->viewinv[2]);
normalize_v3(data->warp_nor);
/* tangent */
sub_v3_v3v3(tvec, data->warp_end, data->warp_sta);
cross_v3_v3v3(data->warp_tan, tvec, data->warp_nor);
normalize_v3(data->warp_tan);
data->warp_init_dist = len_v3v3(data->warp_end, data->warp_sta);
t->custom.mode.data = data;
t->custom.mode.use_free = true;
}
2013-11-20 12:14:10 +11:00
static eRedrawFlag handleEventBend(TransInfo *UNUSED(t), const wmEvent *event)
{
eRedrawFlag status = TREDRAW_NOTHING;
2018-05-13 06:44:03 +02:00
if (event->type == MIDDLEMOUSE && event->val == KM_PRESS) {
status = TREDRAW_HARD;
}
2018-05-13 06:44:03 +02:00
return status;
}
2013-11-20 12:14:10 +11:00
static void Bend(TransInfo *t, const int UNUSED(mval[2]))
{
float vec[3];
float pivot_global[3];
float warp_end_radius_global[3];
int i;
char str[UI_MAX_DRAW_STR];
const struct BendCustomData *data = t->custom.mode.data;
const bool is_clamp = (t->flag & T_ALT_TRANSFORM) == 0;
union {
struct {
float angle, scale;
};
float vector[2];
} values;
/* amount of radians for bend */
copy_v2_v2(values.vector, t->values);
#if 0
snapGrid(t, angle_rad);
#else
/* hrmf, snapping radius is using 'angle' steps, need to convert to something else
* this isnt essential but nicer to give reasonable snapping values for radius */
if (t->tsnap.mode & SCE_SNAP_MODE_INCREMENT) {
const float radius_snap = 0.1f;
const float snap_hack = (t->snap[1] * data->warp_init_dist) / radius_snap;
values.scale *= snap_hack;
snapGridIncrement(t, values.vector);
values.scale /= snap_hack;
}
#endif
if (applyNumInput(&t->num, values.vector)) {
values.scale = values.scale / data->warp_init_dist;
}
copy_v2_v2(t->values, values.vector);
/* header print for NumInput */
if (hasNumInput(&t->num)) {
char c[NUM_STR_REP_LEN * 2];
outputNumInput(&(t->num), c, &t->scene->unit);
BLI_snprintf(str,
sizeof(str),
IFACE_("Bend Angle: %s Radius: %s Alt, Clamp %s"),
&c[0],
&c[NUM_STR_REP_LEN],
WM_bool_as_string(is_clamp));
}
else {
/* default header print */
BLI_snprintf(str,
sizeof(str),
IFACE_("Bend Angle: %.3f Radius: %.4f, Alt, Clamp %s"),
RAD2DEGF(values.angle),
values.scale * data->warp_init_dist,
WM_bool_as_string(is_clamp));
}
values.angle *= -1.0f;
values.scale *= data->warp_init_dist;
/* calc 'data->warp_end' from 'data->warp_end_init' */
copy_v3_v3(warp_end_radius_global, data->warp_end);
dist_ensure_v3_v3fl(warp_end_radius_global, data->warp_sta, values.scale);
/* done */
/* calculate pivot */
copy_v3_v3(pivot_global, data->warp_sta);
if (values.angle > 0.0f) {
madd_v3_v3fl(pivot_global,
data->warp_tan,
-values.scale * shell_angle_to_dist((float)M_PI_2 - values.angle));
}
else {
madd_v3_v3fl(pivot_global,
data->warp_tan,
+values.scale * shell_angle_to_dist((float)M_PI_2 + values.angle));
}
/* TODO(campbell): xform, compensate object center. */
FOREACH_TRANS_DATA_CONTAINER (t, tc) {
TransData *td = tc->data;
float warp_sta_local[3];
float warp_end_local[3];
float warp_end_radius_local[3];
float pivot_local[3];
if (tc->use_local_mat) {
sub_v3_v3v3(warp_sta_local, data->warp_sta, tc->mat[3]);
sub_v3_v3v3(warp_end_local, data->warp_end, tc->mat[3]);
sub_v3_v3v3(warp_end_radius_local, warp_end_radius_global, tc->mat[3]);
sub_v3_v3v3(pivot_local, pivot_global, tc->mat[3]);
}
else {
copy_v3_v3(warp_sta_local, data->warp_sta);
copy_v3_v3(warp_end_local, data->warp_end);
copy_v3_v3(warp_end_radius_local, warp_end_radius_global);
copy_v3_v3(pivot_local, pivot_global);
}
for (i = 0; i < tc->data_len; i++, td++) {
float mat[3][3];
float delta[3];
float fac, fac_scaled;
2019-04-22 09:19:45 +10:00
if (td->flag & TD_NOACTION) {
break;
2019-04-22 09:19:45 +10:00
}
2019-04-22 09:19:45 +10:00
if (td->flag & TD_SKIP) {
continue;
2019-04-22 09:19:45 +10:00
}
if (UNLIKELY(values.angle == 0.0f)) {
copy_v3_v3(td->loc, td->iloc);
continue;
}
copy_v3_v3(vec, td->iloc);
mul_m3_v3(td->mtx, vec);
fac = line_point_factor_v3(vec, warp_sta_local, warp_end_radius_local);
if (is_clamp) {
CLAMP(fac, 0.0f, 1.0f);
}
if (t->options & CTX_GPENCIL_STROKES) {
/* grease pencil multiframe falloff */
bGPDstroke *gps = (bGPDstroke *)td->extra;
if (gps != NULL) {
fac_scaled = fac * td->factor * gps->runtime.multi_frame_falloff;
}
else {
fac_scaled = fac * td->factor;
}
}
else {
fac_scaled = fac * td->factor;
}
axis_angle_normalized_to_mat3(mat, data->warp_nor, values.angle * fac_scaled);
interp_v3_v3v3(delta, warp_sta_local, warp_end_radius_local, fac_scaled);
sub_v3_v3(delta, warp_sta_local);
/* delta is subtracted, rotation adds back this offset */
sub_v3_v3(vec, delta);
sub_v3_v3(vec, pivot_local);
mul_m3_v3(mat, vec);
add_v3_v3(vec, pivot_local);
mul_m3_v3(td->smtx, vec);
/* rotation */
if ((t->flag & T_POINTS) == 0) {
ElementRotation(t, tc, td, mat, V3D_AROUND_LOCAL_ORIGINS);
}
/* location */
copy_v3_v3(td->loc, vec);
}
}
recalcData(t);
ED_area_status_text(t->sa, str);
}
/** \} */
/* -------------------------------------------------------------------- */
/* Transform (Shear) */
/** \name Transform Shear
* \{ */
static void initShear_mouseInputMode(TransInfo *t)
{
float dir[3];
if (t->custom.mode.data == NULL) {
copy_v3_v3(dir, t->orient_matrix[t->orient_axis_ortho]);
}
else {
cross_v3_v3v3(dir, t->orient_matrix[t->orient_axis_ortho], t->orient_matrix[t->orient_axis]);
}
/* Without this, half the gizmo handles move in the opposite direction. */
if ((t->orient_axis_ortho + 1) % 3 != t->orient_axis) {
negate_v3(dir);
}
mul_mat3_m4_v3(t->viewmat, dir);
if (normalize_v2(dir) == 0.0f) {
dir[0] = 1.0f;
}
setCustomPointsFromDirection(t, &t->mouse, dir);
initMouseInputMode(t, &t->mouse, INPUT_CUSTOM_RATIO);
}
static void initShear(TransInfo *t)
{
t->mode = TFM_SHEAR;
t->transform = applyShear;
t->handleEvent = handleEventShear;
if (t->orient_axis == t->orient_axis_ortho) {
t->orient_axis = 2;
t->orient_axis_ortho = 1;
}
initShear_mouseInputMode(t);
2018-05-13 06:44:03 +02:00
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = 0.1f;
t->snap[2] = t->snap[1] * 0.1f;
Support units in modal numinput Summary: This completly changes the way modal numinput is handled. Now, edited expression is a string, which then gets unit- and py-evaluated to get a float value. We gain many power and flexibility, but lose a few "shortcuts" like '-' to negate, or '/' to inverse (if they are really needed, we still can add them with modifiers, like e.g. ctrl-/ or so). Features: - units (cm, ", deg, etc.). - basic operations from python/BKE_unit (+, *, **, etc.), and math constants and functions (pi, sin, etc.). - you can navigate in edited value (left/right key, ctrl to move by block) and insert/delete chars, e.g. to fix a typo without having to rewrite everything. - you can go to next/previous value with (ctrl-)TAB key. - As before, hitting backspace after having deleted all leading chars will first reset the edited value to init state, and on second press, the whole "modal numinput" editing will be cancelled, going back to usual transform with mouse. Notes: - Did not touch to how values are shown in header when modal numinput is not enabled (would do that in another commit), so this is still quite inconsistent. - Added back radian support in BKE_unit. - Added arcminute/arcsecond to BKE_unit. (those unit changes affect all angle UI controls, btw, so you can now enter radians or longitude/latitude values when in degrees units). Related to T37600. Reviewers: brecht, campbellbarton, carter2422 Reviewed By: brecht, campbellbarton, carter2422 Thanks everybody! Differential Revision: http://developer.blender.org/D61
2013-12-21 17:11:43 +01:00
copy_v3_fl(t->num.val_inc, t->snap[1]);
t->num.unit_sys = t->scene->unit.system;
t->num.unit_type[0] = B_UNIT_NONE; /* Don't think we have any unit here? */
t->flag |= T_NO_CONSTRAINT;
}
static eRedrawFlag handleEventShear(TransInfo *t, const wmEvent *event)
{
eRedrawFlag status = TREDRAW_NOTHING;
2018-05-13 06:44:03 +02:00
if (event->type == MIDDLEMOUSE && event->val == KM_PRESS) {
/* Use custom.mode.data pointer to signal Shear direction */
if (t->custom.mode.data == NULL) {
t->custom.mode.data = (void *)1;
}
else {
t->custom.mode.data = NULL;
}
initShear_mouseInputMode(t);
status = TREDRAW_HARD;
}
else if (event->type == XKEY && event->val == KM_PRESS) {
t->custom.mode.data = NULL;
initShear_mouseInputMode(t);
2018-05-13 06:44:03 +02:00
status = TREDRAW_HARD;
}
else if (event->type == YKEY && event->val == KM_PRESS) {
t->custom.mode.data = (void *)1;
initShear_mouseInputMode(t);
2018-05-13 06:44:03 +02:00
status = TREDRAW_HARD;
}
2018-05-13 06:44:03 +02:00
return status;
}
static void applyShear(TransInfo *t, const int UNUSED(mval[2]))
{
float vec[3];
float smat[3][3], tmat[3][3], totmat[3][3], axismat[3][3], axismat_inv[3][3];
float value;
int i;
char str[UI_MAX_DRAW_STR];
const bool is_local_center = transdata_check_local_center(t, t->around);
value = t->values[0];
snapGridIncrement(t, &value);
applyNumInput(&t->num, &value);
t->values[0] = value;
/* header print for NumInput */
if (hasNumInput(&t->num)) {
char c[NUM_STR_REP_LEN];
outputNumInput(&(t->num), c, &t->scene->unit);
BLI_snprintf(str, sizeof(str), IFACE_("Shear: %s %s"), c, t->proptext);
}
else {
/* default header print */
BLI_snprintf(str,
sizeof(str),
IFACE_("Shear: %.3f %s (Press X or Y to set shear axis)"),
value,
t->proptext);
}
unit_m3(smat);
// Custom data signals shear direction
2019-04-22 09:19:45 +10:00
if (t->custom.mode.data == NULL) {
smat[1][0] = value;
2019-04-22 09:19:45 +10:00
}
else {
smat[0][1] = value;
2019-04-22 09:19:45 +10:00
}
copy_v3_v3(axismat_inv[0], t->orient_matrix[t->orient_axis_ortho]);
copy_v3_v3(axismat_inv[2], t->orient_matrix[t->orient_axis]);
cross_v3_v3v3(axismat_inv[1], axismat_inv[0], axismat_inv[2]);
invert_m3_m3(axismat, axismat_inv);
mul_m3_series(totmat, axismat_inv, smat, axismat);
FOREACH_TRANS_DATA_CONTAINER (t, tc) {
TransData *td = tc->data;
for (i = 0; i < tc->data_len; i++, td++) {
const float *center, *co;
2019-04-22 09:19:45 +10:00
if (td->flag & TD_NOACTION) {
break;
2019-04-22 09:19:45 +10:00
}
2019-04-22 09:19:45 +10:00
if (td->flag & TD_SKIP) {
continue;
2019-04-22 09:19:45 +10:00
}
if (t->flag & T_EDIT) {
mul_m3_series(tmat, td->smtx, totmat, td->mtx);
}
else {
copy_m3_m3(tmat, totmat);
}
if (is_local_center) {
center = td->center;
co = td->loc;
}
else {
center = tc->center_local;
co = td->center;
}
sub_v3_v3v3(vec, co, center);
mul_m3_v3(tmat, vec);
add_v3_v3(vec, center);
sub_v3_v3(vec, co);
if (t->options & CTX_GPENCIL_STROKES) {
/* grease pencil multiframe falloff */
bGPDstroke *gps = (bGPDstroke *)td->extra;
if (gps != NULL) {
mul_v3_fl(vec, td->factor * gps->runtime.multi_frame_falloff);
}
else {
mul_v3_fl(vec, td->factor);
}
}
else {
mul_v3_fl(vec, td->factor);
}
add_v3_v3v3(td->loc, td->iloc, vec);
}
}
recalcData(t);
ED_area_status_text(t->sa, str);
}
/** \} */
/* -------------------------------------------------------------------- */
/* Transform (Resize) */
/** \name Transform Resize
* \{ */
static void initResize(TransInfo *t)
{
t->mode = TFM_RESIZE;
t->transform = applyResize;
2018-05-13 06:44:03 +02:00
initMouseInputMode(t, &t->mouse, INPUT_SPRING_FLIP);
2018-05-13 06:44:03 +02:00
t->flag |= T_NULL_ONE;
t->num.val_flag[0] |= NUM_NULL_ONE;
t->num.val_flag[1] |= NUM_NULL_ONE;
t->num.val_flag[2] |= NUM_NULL_ONE;
t->num.flag |= NUM_AFFECT_ALL;
if ((t->flag & T_EDIT) == 0) {
t->flag |= T_NO_ZERO;
#ifdef USE_NUM_NO_ZERO
t->num.val_flag[0] |= NUM_NO_ZERO;
t->num.val_flag[1] |= NUM_NO_ZERO;
t->num.val_flag[2] |= NUM_NO_ZERO;
#endif
}
2018-05-13 06:44:03 +02:00
t->idx_max = 2;
t->num.idx_max = 2;
t->snap[0] = 0.0f;
t->snap[1] = 0.1f;
t->snap[2] = t->snap[1] * 0.1f;
copy_v3_fl(t->num.val_inc, t->snap[1]);
t->num.unit_sys = t->scene->unit.system;
t->num.unit_type[0] = B_UNIT_NONE;
t->num.unit_type[1] = B_UNIT_NONE;
t->num.unit_type[2] = B_UNIT_NONE;
}
static void headerResize(TransInfo *t, const float vec[3], char str[UI_MAX_DRAW_STR])
{
char tvec[NUM_STR_REP_LEN * 3];
size_t ofs = 0;
if (hasNumInput(&t->num)) {
outputNumInput(&(t->num), tvec, &t->scene->unit);
}
else {
BLI_snprintf(&tvec[0], NUM_STR_REP_LEN, "%.4f", vec[0]);
BLI_snprintf(&tvec[NUM_STR_REP_LEN], NUM_STR_REP_LEN, "%.4f", vec[1]);
BLI_snprintf(&tvec[NUM_STR_REP_LEN * 2], NUM_STR_REP_LEN, "%.4f", vec[2]);
}
if (t->con.mode & CON_APPLY) {
switch (t->num.idx_max) {
case 0:
ofs += BLI_snprintf(str + ofs,
UI_MAX_DRAW_STR - ofs,
IFACE_("Scale: %s%s %s"),
&tvec[0],
t->con.text,
t->proptext);
break;
case 1:
ofs += BLI_snprintf(str + ofs,
UI_MAX_DRAW_STR - ofs,
IFACE_("Scale: %s : %s%s %s"),
&tvec[0],
&tvec[NUM_STR_REP_LEN],
t->con.text,
t->proptext);
break;
case 2:
ofs += BLI_snprintf(str + ofs,
UI_MAX_DRAW_STR - ofs,
IFACE_("Scale: %s : %s : %s%s %s"),
&tvec[0],
&tvec[NUM_STR_REP_LEN],
&tvec[NUM_STR_REP_LEN * 2],
t->con.text,
t->proptext);
break;
}
}
else {
if (t->flag & T_2D_EDIT) {
ofs += BLI_snprintf(str + ofs,
UI_MAX_DRAW_STR - ofs,
IFACE_("Scale X: %s Y: %s%s %s"),
&tvec[0],
&tvec[NUM_STR_REP_LEN],
t->con.text,
t->proptext);
}
else {
ofs += BLI_snprintf(str + ofs,
UI_MAX_DRAW_STR - ofs,
IFACE_("Scale X: %s Y: %s Z: %s%s %s"),
&tvec[0],
&tvec[NUM_STR_REP_LEN],
&tvec[NUM_STR_REP_LEN * 2],
t->con.text,
t->proptext);
}
}
if (t->flag & T_PROP_EDIT_ALL) {
ofs += BLI_snprintf(
str + ofs, UI_MAX_DRAW_STR - ofs, IFACE_(" Proportional size: %.2f"), t->prop_size);
}
}
/**
* \a smat is reference matrix only.
*
* \note this is a tricky area, before making changes see: T29633, T42444
*/
static void TransMat3ToSize(float mat[3][3], float smat[3][3], float size[3])
{
float rmat[3][3];
mat3_to_rot_size(rmat, size, mat);
/* first tried with dotproduct... but the sign flip is crucial */
2019-04-22 09:19:45 +10:00
if (dot_v3v3(rmat[0], smat[0]) < 0.0f) {
size[0] = -size[0];
2019-04-22 09:19:45 +10:00
}
if (dot_v3v3(rmat[1], smat[1]) < 0.0f) {
size[1] = -size[1];
2019-04-22 09:19:45 +10:00
}
if (dot_v3v3(rmat[2], smat[2]) < 0.0f) {
size[2] = -size[2];
2019-04-22 09:19:45 +10:00
}
}
static void ElementResize(TransInfo *t, TransDataContainer *tc, TransData *td, float mat[3][3])
{
float tmat[3][3], smat[3][3], center[3];
float vec[3];
if (t->flag & T_EDIT) {
mul_m3_m3m3(smat, mat, td->mtx);
mul_m3_m3m3(tmat, td->smtx, smat);
}
else {
copy_m3_m3(tmat, mat);
}
if (t->con.applySize) {
t->con.applySize(t, tc, td, tmat);
}
/* local constraint shouldn't alter center */
if (transdata_check_local_center(t, t->around)) {
copy_v3_v3(center, td->center);
}
else if (t->options & CTX_MOVIECLIP) {
if (td->flag & TD_INDIVIDUAL_SCALE) {
copy_v3_v3(center, td->center);
}
else {
copy_v3_v3(center, tc->center_local);
}
}
else {
copy_v3_v3(center, tc->center_local);
}
/* Size checked needed since the 3D cursor only uses rotation fields. */
if (td->ext && td->ext->size) {
float fsize[3];
if (t->flag & (T_OBJECT | T_TEXTURE | T_POSE)) {
float obsizemat[3][3];
/* Reorient the size mat to fit the oriented object. */
mul_m3_m3m3(obsizemat, tmat, td->axismtx);
/* print_m3("obsizemat", obsizemat); */
TransMat3ToSize(obsizemat, td->axismtx, fsize);
/* print_v3("fsize", fsize); */
}
else {
mat3_to_size(fsize, tmat);
}
protectedSizeBits(td->protectflag, fsize);
if ((t->flag & T_V3D_ALIGN) == 0) { /* align mode doesn't resize objects itself */
if ((td->flag & TD_SINGLESIZE) && !(t->con.mode & CON_APPLY)) {
/* scale val and reset size */
*td->val = td->ival * (1 + (fsize[0] - 1) * td->factor);
td->ext->size[0] = td->ext->isize[0];
td->ext->size[1] = td->ext->isize[1];
td->ext->size[2] = td->ext->isize[2];
}
else {
/* Reset val if SINGLESIZE but using a constraint */
2019-04-22 09:19:45 +10:00
if (td->flag & TD_SINGLESIZE) {
*td->val = td->ival;
2019-04-22 09:19:45 +10:00
}
td->ext->size[0] = td->ext->isize[0] * (1 + (fsize[0] - 1) * td->factor);
td->ext->size[1] = td->ext->isize[1] * (1 + (fsize[1] - 1) * td->factor);
td->ext->size[2] = td->ext->isize[2] * (1 + (fsize[2] - 1) * td->factor);
}
}
constraintSizeLim(t, td);
}
/* For individual element center, Editmode need to use iloc */
2019-04-22 09:19:45 +10:00
if (t->flag & T_POINTS) {
sub_v3_v3v3(vec, td->iloc, center);
2019-04-22 09:19:45 +10:00
}
else {
sub_v3_v3v3(vec, td->center, center);
2019-04-22 09:19:45 +10:00
}
mul_m3_v3(tmat, vec);
add_v3_v3(vec, center);
2019-04-22 09:19:45 +10:00
if (t->flag & T_POINTS) {
sub_v3_v3(vec, td->iloc);
2019-04-22 09:19:45 +10:00
}
else {
sub_v3_v3(vec, td->center);
2019-04-22 09:19:45 +10:00
}
/* grease pencil falloff */
if (t->options & CTX_GPENCIL_STROKES) {
bGPDstroke *gps = (bGPDstroke *)td->extra;
mul_v3_fl(vec, td->factor * gps->runtime.multi_frame_falloff);
/* scale stroke thickness */
if (td->val) {
snapGridIncrement(t, t->values);
applyNumInput(&t->num, t->values);
float ratio = t->values[0];
*td->val = td->ival * ratio * gps->runtime.multi_frame_falloff;
CLAMP_MIN(*td->val, 0.001f);
}
}
else {
mul_v3_fl(vec, td->factor);
}
if (t->flag & (T_OBJECT | T_POSE)) {
mul_m3_v3(td->smtx, vec);
}
protectedTransBits(td->protectflag, vec);
if (td->loc) {
add_v3_v3v3(td->loc, td->iloc, vec);
}
constraintTransLim(t, td);
}
static void applyResize(TransInfo *t, const int UNUSED(mval[2]))
{
float mat[3][3];
int i;
char str[UI_MAX_DRAW_STR];
if (t->flag & T_AUTOVALUES) {
copy_v3_v3(t->values, t->auto_values);
}
else {
float ratio = t->values[0];
copy_v3_fl(t->values, ratio);
snapGridIncrement(t, t->values);
if (applyNumInput(&t->num, t->values)) {
constraintNumInput(t, t->values);
}
applySnapping(t, t->values);
}
size_to_mat3(mat, t->values);
if (t->con.mode & CON_APPLY) {
t->con.applySize(t, NULL, NULL, mat);
/* Only so we have re-usable value with redo. */
float pvec[3] = {0.0f, 0.0f, 0.0f};
int j = 0;
for (i = 0; i < 3; i++) {
if (!(t->con.mode & (CON_AXIS0 << i))) {
t->values[i] = 1.0f;
}
else {
pvec[j++] = t->values[i];
}
}
headerResize(t, pvec, str);
}
else {
headerResize(t, t->values, str);
}
copy_m3_m3(t->mat, mat); // used in gizmo
FOREACH_TRANS_DATA_CONTAINER (t, tc) {
TransData *td = tc->data;
for (i = 0; i < tc->data_len; i++, td++) {
2019-04-22 09:19:45 +10:00
if (td->flag & TD_NOACTION) {
break;
2019-04-22 09:19:45 +10:00
}
2019-04-22 09:19:45 +10:00
if (td->flag & TD_SKIP) {
continue;
2019-04-22 09:19:45 +10:00
}
ElementResize(t, tc, td, mat);
}
}
/* evil hack - redo resize if cliping needed */
if (t->flag & T_CLIP_UV && clipUVTransform(t, t->values, 1)) {
size_to_mat3(mat, t->values);
if (t->con.mode & CON_APPLY) {
t->con.applySize(t, NULL, NULL, mat);
}
FOREACH_TRANS_DATA_CONTAINER (t, tc) {
TransData *td = tc->data;
2019-04-22 09:19:45 +10:00
for (i = 0; i < tc->data_len; i++, td++) {
ElementResize(t, tc, td, mat);
2019-04-22 09:19:45 +10:00
}
/* In proportional edit it can happen that */
/* vertices in the radius of the brush end */
/* outside the clipping area */
/* XXX HACK - dg */
if (t->flag & T_PROP_EDIT_ALL) {
clipUVData(t);
}
}
}
recalcData(t);
ED_area_status_text(t->sa, str);
}
/** \} */
/* -------------------------------------------------------------------- */
/* Transform (Skin) */
/** \name Transform Skin
* \{ */
static void initSkinResize(TransInfo *t)
{
t->mode = TFM_SKIN_RESIZE;
t->transform = applySkinResize;
2018-05-13 06:44:03 +02:00
initMouseInputMode(t, &t->mouse, INPUT_SPRING_FLIP);
2018-05-13 06:44:03 +02:00
t->flag |= T_NULL_ONE;
t->num.val_flag[0] |= NUM_NULL_ONE;
t->num.val_flag[1] |= NUM_NULL_ONE;
t->num.val_flag[2] |= NUM_NULL_ONE;
t->num.flag |= NUM_AFFECT_ALL;
if ((t->flag & T_EDIT) == 0) {
t->flag |= T_NO_ZERO;
#ifdef USE_NUM_NO_ZERO
t->num.val_flag[0] |= NUM_NO_ZERO;
t->num.val_flag[1] |= NUM_NO_ZERO;
t->num.val_flag[2] |= NUM_NO_ZERO;
#endif
}
2018-05-13 06:44:03 +02:00
t->idx_max = 2;
t->num.idx_max = 2;
t->snap[0] = 0.0f;
t->snap[1] = 0.1f;
t->snap[2] = t->snap[1] * 0.1f;
copy_v3_fl(t->num.val_inc, t->snap[1]);
t->num.unit_sys = t->scene->unit.system;
t->num.unit_type[0] = B_UNIT_NONE;
t->num.unit_type[1] = B_UNIT_NONE;
t->num.unit_type[2] = B_UNIT_NONE;
}
static void applySkinResize(TransInfo *t, const int UNUSED(mval[2]))
{
float size[3], mat[3][3];
int i;
char str[UI_MAX_DRAW_STR];
2018-05-13 06:44:03 +02:00
copy_v3_fl(size, t->values[0]);
2018-05-13 06:44:03 +02:00
snapGridIncrement(t, size);
2018-05-13 06:44:03 +02:00
if (applyNumInput(&t->num, size)) {
constraintNumInput(t, size);
}
2018-05-13 06:44:03 +02:00
applySnapping(t, size);
2018-05-13 06:44:03 +02:00
if (t->flag & T_AUTOVALUES) {
copy_v3_v3(size, t->auto_values);
}
2018-05-13 06:44:03 +02:00
copy_v3_v3(t->values, size);
2018-05-13 06:44:03 +02:00
size_to_mat3(mat, size);
2018-05-13 06:44:03 +02:00
headerResize(t, size, str);
FOREACH_TRANS_DATA_CONTAINER (t, tc) {
TransData *td = tc->data;
for (i = 0; i < tc->data_len; i++, td++) {
float tmat[3][3], smat[3][3];
float fsize[3];
2019-04-22 09:19:45 +10:00
if (td->flag & TD_NOACTION) {
break;
2019-04-22 09:19:45 +10:00
}
2019-04-22 09:19:45 +10:00
if (td->flag & TD_SKIP) {
continue;
2019-04-22 09:19:45 +10:00
}
if (t->flag & T_EDIT) {
mul_m3_m3m3(smat, mat, td->mtx);
mul_m3_m3m3(tmat, td->smtx, smat);
}
else {
copy_m3_m3(tmat, mat);
}
if (t->con.applySize) {
t->con.applySize(t, NULL, NULL, tmat);
}
mat3_to_size(fsize, tmat);
td->val[0] = td->ext->isize[0] * (1 + (fsize[0] - 1) * td->factor);
td->val[1] = td->ext->isize[1] * (1 + (fsize[1] - 1) * td->factor);
}
}
recalcData(t);
2018-05-13 06:44:03 +02:00
ED_area_status_text(t->sa, str);
}
/** \} */
/* -------------------------------------------------------------------- */
/* Transform (ToSphere) */
/** \name Transform ToSphere
* \{ */
static void initToSphere(TransInfo *t)
{
int i;
2018-05-13 06:44:03 +02:00
t->mode = TFM_TOSPHERE;
t->transform = applyToSphere;
2018-05-13 06:44:03 +02:00
initMouseInputMode(t, &t->mouse, INPUT_HORIZONTAL_RATIO);
2018-05-13 06:44:03 +02:00
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = 0.1f;
t->snap[2] = t->snap[1] * 0.1f;
2018-05-13 06:44:03 +02:00
copy_v3_fl(t->num.val_inc, t->snap[1]);
t->num.unit_sys = t->scene->unit.system;
t->num.unit_type[0] = B_UNIT_NONE;
t->num.val_flag[0] |= NUM_NULL_ONE | NUM_NO_NEGATIVE;
t->flag |= T_NO_CONSTRAINT;
// Calculate average radius
FOREACH_TRANS_DATA_CONTAINER (t, tc) {
TransData *td = tc->data;
for (i = 0; i < tc->data_len; i++, td++) {
t->val += len_v3v3(tc->center_local, td->iloc);
}
}
t->val /= (float)t->data_len_all;
}
static void applyToSphere(TransInfo *t, const int UNUSED(mval[2]))
{
float vec[3];
float ratio, radius;
int i;
char str[UI_MAX_DRAW_STR];
ratio = t->values[0];
2018-05-13 06:44:03 +02:00
snapGridIncrement(t, &ratio);
2018-05-13 06:44:03 +02:00
applyNumInput(&t->num, &ratio);
2018-05-13 06:44:03 +02:00
CLAMP(ratio, 0.0f, 1.0f);
2018-05-13 06:44:03 +02:00
t->values[0] = ratio;
/* header print for NumInput */
if (hasNumInput(&t->num)) {
char c[NUM_STR_REP_LEN];
2018-05-13 06:44:03 +02:00
outputNumInput(&(t->num), c, &t->scene->unit);
2018-05-13 06:44:03 +02:00
BLI_snprintf(str, sizeof(str), IFACE_("To Sphere: %s %s"), c, t->proptext);
}
else {
/* default header print */
BLI_snprintf(str, sizeof(str), IFACE_("To Sphere: %.4f %s"), ratio, t->proptext);
}
FOREACH_TRANS_DATA_CONTAINER (t, tc) {
TransData *td = tc->data;
for (i = 0; i < tc->data_len; i++, td++) {
float tratio;
2019-04-22 09:19:45 +10:00
if (td->flag & TD_NOACTION) {
break;
2019-04-22 09:19:45 +10:00
}
2019-04-22 09:19:45 +10:00
if (td->flag & TD_SKIP) {
continue;
2019-04-22 09:19:45 +10:00
}
sub_v3_v3v3(vec, td->iloc, tc->center_local);
radius = normalize_v3(vec);
tratio = ratio * td->factor;
mul_v3_fl(vec, radius * (1.0f - tratio) + t->val * tratio);
add_v3_v3v3(td->loc, tc->center_local, vec);
}
}
recalcData(t);
2018-05-13 06:44:03 +02:00
ED_area_status_text(t->sa, str);
}
/** \} */
/* -------------------------------------------------------------------- */
/* Transform (Rotation) */
/** \name Transform Rotation
* \{ */
static void postInputRotation(TransInfo *t, float values[3])
{
float axis_final[3];
copy_v3_v3(axis_final, t->orient_matrix[t->orient_axis]);
if ((t->con.mode & CON_APPLY) && t->con.applyRot) {
t->con.applyRot(t, NULL, NULL, axis_final, values);
}
}
static void initRotation(TransInfo *t)
{
t->mode = TFM_ROTATION;
t->transform = applyRotation;
2018-05-13 06:44:03 +02:00
setInputPostFct(&t->mouse, postInputRotation);
initMouseInputMode(t, &t->mouse, INPUT_ANGLE);
2018-05-13 06:44:03 +02:00
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = DEG2RAD(5.0);
t->snap[2] = DEG2RAD(1.0);
2018-05-13 06:44:03 +02:00
copy_v3_fl(t->num.val_inc, t->snap[2]);
t->num.unit_sys = t->scene->unit.system;
t->num.unit_use_radians = (t->scene->unit.system_rotation == USER_UNIT_ROT_RADIANS);
t->num.unit_type[0] = B_UNIT_ROTATION;
2019-04-22 09:19:45 +10:00
if (t->flag & T_2D_EDIT) {
t->flag |= T_NO_CONSTRAINT;
2019-04-22 09:19:45 +10:00
}
}
2018-05-25 22:24:24 +05:30
/* Used by Transform Rotation and Transform Normal Rotation */
static void headerRotation(TransInfo *t, char str[UI_MAX_DRAW_STR], float final)
{
size_t ofs = 0;
2018-05-25 22:24:24 +05:30
if (hasNumInput(&t->num)) {
char c[NUM_STR_REP_LEN];
2018-05-25 22:24:24 +05:30
outputNumInput(&(t->num), c, &t->scene->unit);
2018-05-25 22:24:24 +05:30
ofs += BLI_snprintf(str + ofs,
UI_MAX_DRAW_STR - ofs,
IFACE_("Rot: %s %s %s"),
&c[0],
t->con.text,
t->proptext);
}
else {
ofs += BLI_snprintf(str + ofs,
UI_MAX_DRAW_STR - ofs,
IFACE_("Rot: %.2f%s %s"),
RAD2DEGF(final),
t->con.text,
t->proptext);
}
2018-05-25 22:24:24 +05:30
if (t->flag & T_PROP_EDIT_ALL) {
ofs += BLI_snprintf(
str + ofs, UI_MAX_DRAW_STR - ofs, IFACE_(" Proportional size: %.2f"), t->prop_size);
}
2018-05-25 22:24:24 +05:30
}
/**
* Applies values of rotation to `td->loc` and `td->ext->quat`
* based on a rotation matrix (mat) and a pivot (center).
*
* Protected axis and other transform settings are taken into account.
*/
static void ElementRotation_ex(
TransInfo *t, TransDataContainer *tc, TransData *td, float mat[3][3], const float *center)
{
float vec[3], totmat[3][3], smat[3][3];
float eul[3], fmat[3][3], quat[4];
if (t->flag & T_POINTS) {
mul_m3_m3m3(totmat, mat, td->mtx);
mul_m3_m3m3(smat, td->smtx, totmat);
/* apply gpencil falloff */
if (t->options & CTX_GPENCIL_STROKES) {
bGPDstroke *gps = (bGPDstroke *)td->extra;
float sx = smat[0][0];
float sy = smat[1][1];
float sz = smat[2][2];
mul_m3_fl(smat, gps->runtime.multi_frame_falloff);
/* fix scale */
smat[0][0] = sx;
smat[1][1] = sy;
smat[2][2] = sz;
}
sub_v3_v3v3(vec, td->iloc, center);
mul_m3_v3(smat, vec);
add_v3_v3v3(td->loc, vec, center);
sub_v3_v3v3(vec, td->loc, td->iloc);
protectedTransBits(td->protectflag, vec);
add_v3_v3v3(td->loc, td->iloc, vec);
if (td->flag & TD_USEQUAT) {
mul_m3_series(fmat, td->smtx, mat, td->mtx);
mat3_to_quat(quat, fmat); // Actual transform
if (td->ext->quat) {
mul_qt_qtqt(td->ext->quat, quat, td->ext->iquat);
/* is there a reason not to have this here? -jahka */
protectedQuaternionBits(td->protectflag, td->ext->quat, td->ext->iquat);
}
}
}
/**
* HACK WARNING
*
* This is some VERY ugly special case to deal with pose mode.
*
* The problem is that mtx and smtx include each bone orientation.
*
* That is needed to rotate each bone properly, HOWEVER, to calculate
* the translation component, we only need the actual armature object's
* matrix (and inverse). That is not all though. Once the proper translation
* has been computed, it has to be converted back into the bone's space.
*/
else if (t->flag & T_POSE) {
// Extract and invert armature object matrix
if ((td->flag & TD_NO_LOC) == 0) {
sub_v3_v3v3(vec, td->center, center);
mul_m3_v3(tc->mat3, vec); // To Global space
mul_m3_v3(mat, vec); // Applying rotation
mul_m3_v3(tc->imat3, vec); // To Local space
add_v3_v3(vec, center);
/* vec now is the location where the object has to be */
sub_v3_v3v3(vec, vec, td->center); // Translation needed from the initial location
/* special exception, see TD_PBONE_LOCAL_MTX definition comments */
if (td->flag & TD_PBONE_LOCAL_MTX_P) {
/* do nothing */
}
else if (td->flag & TD_PBONE_LOCAL_MTX_C) {
mul_m3_v3(tc->mat3, vec); // To Global space
mul_m3_v3(td->ext->l_smtx, vec); // To Pose space (Local Location)
}
else {
mul_m3_v3(tc->mat3, vec); // To Global space
mul_m3_v3(td->smtx, vec); // To Pose space
}
protectedTransBits(td->protectflag, vec);
add_v3_v3v3(td->loc, td->iloc, vec);
constraintTransLim(t, td);
}
/* rotation */
/* MORE HACK: as in some cases the matrix to apply location and rot/scale is not the same,
* and ElementRotation() might be called in Translation context (with align snapping),
* we need to be sure to actually use the *rotation* matrix here...
* So no other way than storing it in some dedicated members of td->ext! */
if ((t->flag & T_V3D_ALIGN) == 0) { /* align mode doesn't rotate objects itself */
/* euler or quaternion/axis-angle? */
if (td->ext->rotOrder == ROT_MODE_QUAT) {
mul_m3_series(fmat, td->ext->r_smtx, mat, td->ext->r_mtx);
mat3_to_quat(quat, fmat); /* Actual transform */
mul_qt_qtqt(td->ext->quat, quat, td->ext->iquat);
/* this function works on end result */
protectedQuaternionBits(td->protectflag, td->ext->quat, td->ext->iquat);
}
else if (td->ext->rotOrder == ROT_MODE_AXISANGLE) {
/* calculate effect based on quats */
float iquat[4], tquat[4];
axis_angle_to_quat(iquat, td->ext->irotAxis, td->ext->irotAngle);
mul_m3_series(fmat, td->ext->r_smtx, mat, td->ext->r_mtx);
mat3_to_quat(quat, fmat); /* Actual transform */
mul_qt_qtqt(tquat, quat, iquat);
quat_to_axis_angle(td->ext->rotAxis, td->ext->rotAngle, tquat);
/* this function works on end result */
protectedAxisAngleBits(td->protectflag,
td->ext->rotAxis,
td->ext->rotAngle,
td->ext->irotAxis,
td->ext->irotAngle);
}
else {
float eulmat[3][3];
mul_m3_m3m3(totmat, mat, td->ext->r_mtx);
mul_m3_m3m3(smat, td->ext->r_smtx, totmat);
/* calculate the total rotatation in eulers */
copy_v3_v3(eul, td->ext->irot);
eulO_to_mat3(eulmat, eul, td->ext->rotOrder);
/* mat = transform, obmat = bone rotation */
mul_m3_m3m3(fmat, smat, eulmat);
mat3_to_compatible_eulO(eul, td->ext->rot, td->ext->rotOrder, fmat);
/* and apply (to end result only) */
protectedRotateBits(td->protectflag, eul, td->ext->irot);
copy_v3_v3(td->ext->rot, eul);
}
constraintRotLim(t, td);
}
}
else {
if ((td->flag & TD_NO_LOC) == 0) {
/* translation */
sub_v3_v3v3(vec, td->center, center);
mul_m3_v3(mat, vec);
add_v3_v3(vec, center);
/* vec now is the location where the object has to be */
sub_v3_v3(vec, td->center);
mul_m3_v3(td->smtx, vec);
protectedTransBits(td->protectflag, vec);
add_v3_v3v3(td->loc, td->iloc, vec);
}
constraintTransLim(t, td);
/* rotation */
if ((t->flag & T_V3D_ALIGN) == 0) { // align mode doesn't rotate objects itself
/* euler or quaternion? */
if ((td->ext->rotOrder == ROT_MODE_QUAT) || (td->flag & TD_USEQUAT)) {
/* can be called for texture space translate for example, then opt out */
if (td->ext->quat) {
mul_m3_series(fmat, td->smtx, mat, td->mtx);
mat3_to_quat(quat, fmat); // Actual transform
mul_qt_qtqt(td->ext->quat, quat, td->ext->iquat);
/* this function works on end result */
protectedQuaternionBits(td->protectflag, td->ext->quat, td->ext->iquat);
}
}
else if (td->ext->rotOrder == ROT_MODE_AXISANGLE) {
/* calculate effect based on quats */
float iquat[4], tquat[4];
axis_angle_to_quat(iquat, td->ext->irotAxis, td->ext->irotAngle);
mul_m3_series(fmat, td->smtx, mat, td->mtx);
mat3_to_quat(quat, fmat); // Actual transform
mul_qt_qtqt(tquat, quat, iquat);
quat_to_axis_angle(td->ext->rotAxis, td->ext->rotAngle, tquat);
/* this function works on end result */
protectedAxisAngleBits(td->protectflag,
td->ext->rotAxis,
td->ext->rotAngle,
td->ext->irotAxis,
td->ext->irotAngle);
}
else {
float obmat[3][3];
mul_m3_m3m3(totmat, mat, td->mtx);
mul_m3_m3m3(smat, td->smtx, totmat);
/* calculate the total rotatation in eulers */
add_v3_v3v3(eul, td->ext->irot, td->ext->drot); /* correct for delta rot */
eulO_to_mat3(obmat, eul, td->ext->rotOrder);
/* mat = transform, obmat = object rotation */
mul_m3_m3m3(fmat, smat, obmat);
mat3_to_compatible_eulO(eul, td->ext->rot, td->ext->rotOrder, fmat);
/* correct back for delta rot */
sub_v3_v3v3(eul, eul, td->ext->drot);
/* and apply */
protectedRotateBits(td->protectflag, eul, td->ext->irot);
copy_v3_v3(td->ext->rot, eul);
}
constraintRotLim(t, td);
}
}
}
static void ElementRotation(
TransInfo *t, TransDataContainer *tc, TransData *td, float mat[3][3], const short around)
{
const float *center;
/* local constraint shouldn't alter center */
if (transdata_check_local_center(t, around)) {
center = td->center;
}
else {
center = tc->center_local;
}
ElementRotation_ex(t, tc, td, mat, center);
}
static void applyRotationValue(TransInfo *t, float angle, float axis[3])
{
float mat[3][3];
int i;
2018-05-13 06:44:03 +02:00
axis_angle_normalized_to_mat3(mat, axis, angle);
FOREACH_TRANS_DATA_CONTAINER (t, tc) {
TransData *td = tc->data;
for (i = 0; i < tc->data_len; i++, td++) {
2019-04-22 09:19:45 +10:00
if (td->flag & TD_NOACTION) {
break;
2019-04-22 09:19:45 +10:00
}
2019-04-22 09:19:45 +10:00
if (td->flag & TD_SKIP) {
continue;
2019-04-22 09:19:45 +10:00
}
if (t->con.applyRot) {
t->con.applyRot(t, tc, td, axis, NULL);
axis_angle_normalized_to_mat3(mat, axis, angle * td->factor);
}
else if (t->flag & T_PROP_EDIT) {
axis_angle_normalized_to_mat3(mat, axis, angle * td->factor);
}
ElementRotation(t, tc, td, mat, t->around);
}
}
}
static void applyRotation(TransInfo *t, const int UNUSED(mval[2]))
{
char str[UI_MAX_DRAW_STR];
float final;
final = t->values[0];
snapGridIncrement(t, &final);
float axis_final[3];
copy_v3_v3(axis_final, t->orient_matrix[t->orient_axis]);
if ((t->con.mode & CON_APPLY) && t->con.applyRot) {
t->con.applyRot(t, NULL, NULL, axis_final, NULL);
}
applySnapping(t, &final);
2019-04-17 08:44:58 +02:00
/* Used to clamp final result in [-PI, PI[ range, no idea why,
* inheritance from 2.4x area, see T48998. */
applyNumInput(&t->num, &final);
t->values[0] = final;
headerRotation(t, str, final);
applyRotationValue(t, final, axis_final);
2018-05-13 06:44:03 +02:00
recalcData(t);
2018-05-13 06:44:03 +02:00
ED_area_status_text(t->sa, str);
}
/** \} */
/* -------------------------------------------------------------------- */
/* Transform (Rotation - Trackball) */
/** \name Transform Rotation - Trackball
* \{ */
static void initTrackball(TransInfo *t)
{
t->mode = TFM_TRACKBALL;
t->transform = applyTrackball;
initMouseInputMode(t, &t->mouse, INPUT_TRACKBALL);
t->idx_max = 1;
t->num.idx_max = 1;
t->snap[0] = 0.0f;
t->snap[1] = DEG2RAD(5.0);
t->snap[2] = DEG2RAD(1.0);
copy_v3_fl(t->num.val_inc, t->snap[2]);
t->num.unit_sys = t->scene->unit.system;
t->num.unit_use_radians = (t->scene->unit.system_rotation == USER_UNIT_ROT_RADIANS);
t->num.unit_type[0] = B_UNIT_ROTATION;
t->num.unit_type[1] = B_UNIT_ROTATION;
t->flag |= T_NO_CONSTRAINT;
}
static void applyTrackballValue(TransInfo *t,
const float axis1[3],
const float axis2[3],
float angles[2])
{
float mat[3][3];
float axis[3];
float angle;
int i;
mul_v3_v3fl(axis, axis1, angles[0]);
madd_v3_v3fl(axis, axis2, angles[1]);
angle = normalize_v3(axis);
axis_angle_normalized_to_mat3(mat, axis, angle);
FOREACH_TRANS_DATA_CONTAINER (t, tc) {
TransData *td = tc->data;
for (i = 0; i < tc->data_len; i++, td++) {
2019-04-22 09:19:45 +10:00
if (td->flag & TD_NOACTION) {
break;
2019-04-22 09:19:45 +10:00
}
2019-04-22 09:19:45 +10:00
if (td->flag & TD_SKIP) {
continue;
2019-04-22 09:19:45 +10:00
}
if (t->flag & T_PROP_EDIT) {
axis_angle_normalized_to_mat3(mat, axis, td->factor * angle);
}
ElementRotation(t, tc, td, mat, t->around);
}
}
}
static void applyTrackball(TransInfo *t, const int UNUSED(mval[2]))
{
char str[UI_MAX_DRAW_STR];
size_t ofs = 0;
float axis1[3], axis2[3];
#if 0 /* UNUSED */
float mat[3][3], totmat[3][3], smat[3][3];
#endif
float phi[2];
copy_v3_v3(axis1, t->persinv[0]);
copy_v3_v3(axis2, t->persinv[1]);
normalize_v3(axis1);
normalize_v3(axis2);
copy_v2_v2(phi, t->values);
snapGridIncrement(t, phi);
applyNumInput(&t->num, phi);
copy_v2_v2(t->values, phi);
if (hasNumInput(&t->num)) {
char c[NUM_STR_REP_LEN * 2];
outputNumInput(&(t->num), c, &t->scene->unit);
ofs += BLI_snprintf(str + ofs,
sizeof(str) - ofs,
IFACE_("Trackball: %s %s %s"),
&c[0],
&c[NUM_STR_REP_LEN],
t->proptext);
}
else {
ofs += BLI_snprintf(str + ofs,
sizeof(str) - ofs,
IFACE_("Trackball: %.2f %.2f %s"),
RAD2DEGF(phi[0]),
RAD2DEGF(phi[1]),
t->proptext);
}
if (t->flag & T_PROP_EDIT_ALL) {
ofs += BLI_snprintf(
str + ofs, sizeof(str) - ofs, IFACE_(" Proportional size: %.2f"), t->prop_size);
}
#if 0 /* UNUSED */
axis_angle_normalized_to_mat3(smat, axis1, phi[0]);
axis_angle_normalized_to_mat3(totmat, axis2, phi[1]);
mul_m3_m3m3(mat, smat, totmat);
// TRANSFORM_FIX_ME
//copy_m3_m3(t->mat, mat); // used in gizmo
#endif
applyTrackballValue(t, axis1, axis2, phi);
recalcData(t);
ED_area_status_text(t->sa, str);
}
/** \} */
2018-05-25 22:24:24 +05:30
/* -------------------------------------------------------------------- */
/* Transform (Normal Rotation) */
/** \name Transform Normal Rotation
* \{ */
2018-05-25 22:24:24 +05:30
static void storeCustomLNorValue(TransDataContainer *tc, BMesh *bm)
{
BMLoopNorEditDataArray *lnors_ed_arr = BM_loop_normal_editdata_array_init(bm);
// BMLoopNorEditData *lnor_ed = lnors_ed_arr->lnor_editdata;
2018-05-25 22:24:24 +05:30
tc->custom.mode.data = lnors_ed_arr;
tc->custom.mode.free_cb = freeCustomNormalArray;
2018-05-25 22:24:24 +05:30
}
void freeCustomNormalArray(TransInfo *t, TransDataContainer *tc, TransCustomData *custom_data)
{
BMLoopNorEditDataArray *lnors_ed_arr = custom_data->data;
2018-05-25 22:24:24 +05:30
if (t->state == TRANS_CANCEL) {
BMLoopNorEditData *lnor_ed = lnors_ed_arr->lnor_editdata;
BMEditMesh *em = BKE_editmesh_from_object(tc->obedit);
BMesh *bm = em->bm;
2018-05-25 22:24:24 +05:30
/* Restore custom loop normal on cancel */
for (int i = 0; i < lnors_ed_arr->totloop; i++, lnor_ed++) {
BKE_lnor_space_custom_normal_to_data(
bm->lnor_spacearr->lspacearr[lnor_ed->loop_index], lnor_ed->niloc, lnor_ed->clnors_data);
}
}
2018-05-25 22:24:24 +05:30
BM_loop_normal_editdata_array_free(lnors_ed_arr);
2018-05-25 22:24:24 +05:30
tc->custom.mode.data = NULL;
tc->custom.mode.free_cb = NULL;
2018-05-25 22:24:24 +05:30
}
static void initNormalRotation(TransInfo *t)
{
t->mode = TFM_NORMAL_ROTATION;
t->transform = applyNormalRotation;
2018-05-25 22:24:24 +05:30
setInputPostFct(&t->mouse, postInputRotation);
initMouseInputMode(t, &t->mouse, INPUT_ANGLE);
2018-05-25 22:24:24 +05:30
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = DEG2RAD(5.0);
t->snap[2] = DEG2RAD(1.0);
2018-05-25 22:24:24 +05:30
copy_v3_fl(t->num.val_inc, t->snap[2]);
t->num.unit_sys = t->scene->unit.system;
t->num.unit_use_radians = (t->scene->unit.system_rotation == USER_UNIT_ROT_RADIANS);
t->num.unit_type[0] = B_UNIT_ROTATION;
2018-05-25 22:24:24 +05:30
FOREACH_TRANS_DATA_CONTAINER (t, tc) {
BMEditMesh *em = BKE_editmesh_from_object(tc->obedit);
BMesh *bm = em->bm;
2018-05-25 22:24:24 +05:30
BKE_editmesh_lnorspace_update(em);
2018-05-25 22:24:24 +05:30
storeCustomLNorValue(tc, bm);
}
2018-05-25 22:24:24 +05:30
}
/* Works by getting custom normal from clnor_data, transform, then store */
static void applyNormalRotation(TransInfo *t, const int UNUSED(mval[2]))
{
char str[UI_MAX_DRAW_STR];
2018-05-25 22:24:24 +05:30
float axis_final[3];
copy_v3_v3(axis_final, t->orient_matrix[t->orient_axis]);
if ((t->con.mode & CON_APPLY) && t->con.applyRot) {
t->con.applyRot(t, NULL, NULL, axis_final, NULL);
}
2018-05-25 22:24:24 +05:30
FOREACH_TRANS_DATA_CONTAINER (t, tc) {
BMEditMesh *em = BKE_editmesh_from_object(tc->obedit);
BMesh *bm = em->bm;
2018-05-25 22:24:24 +05:30
BMLoopNorEditDataArray *lnors_ed_arr = tc->custom.mode.data;
BMLoopNorEditData *lnor_ed = lnors_ed_arr->lnor_editdata;
2018-05-25 22:24:24 +05:30
float axis[3];
float mat[3][3];
float angle = t->values[0];
copy_v3_v3(axis, axis_final);
2018-05-25 22:24:24 +05:30
snapGridIncrement(t, &angle);
2018-05-25 22:24:24 +05:30
applySnapping(t, &angle);
2018-05-25 22:24:24 +05:30
applyNumInput(&t->num, &angle);
2018-05-25 22:24:24 +05:30
headerRotation(t, str, angle);
2018-05-25 22:24:24 +05:30
axis_angle_normalized_to_mat3(mat, axis, angle);
2018-05-25 22:24:24 +05:30
for (int i = 0; i < lnors_ed_arr->totloop; i++, lnor_ed++) {
mul_v3_m3v3(lnor_ed->nloc, mat, lnor_ed->niloc);
2018-05-25 22:24:24 +05:30
BKE_lnor_space_custom_normal_to_data(
bm->lnor_spacearr->lspacearr[lnor_ed->loop_index], lnor_ed->nloc, lnor_ed->clnors_data);
}
}
2018-05-25 22:24:24 +05:30
recalcData(t);
2018-05-25 22:24:24 +05:30
ED_area_status_text(t->sa, str);
2018-05-25 22:24:24 +05:30
}
/** \} */
/* -------------------------------------------------------------------- */
/* Transform (Translation) */
static void initSnapSpatial(TransInfo *t, float r_snap[3])
{
if (t->spacetype == SPACE_VIEW3D) {
RegionView3D *rv3d = t->ar->regiondata;
if (rv3d) {
View3D *v3d = t->sa->spacedata.first;
r_snap[0] = 0.0f;
r_snap[1] = ED_view3d_grid_view_scale(t->scene, v3d, rv3d, NULL) * 1.0f;
r_snap[2] = r_snap[1] * 0.1f;
}
}
else if (t->spacetype == SPACE_IMAGE) {
r_snap[0] = 0.0f;
r_snap[1] = 0.0625f;
r_snap[2] = 0.03125f;
}
else if (t->spacetype == SPACE_CLIP) {
r_snap[0] = 0.0f;
r_snap[1] = 0.125f;
r_snap[2] = 0.0625f;
}
else if (t->spacetype == SPACE_NODE) {
r_snap[0] = 0.0f;
r_snap[1] = ED_node_grid_size();
r_snap[2] = ED_node_grid_size();
}
else if (t->spacetype == SPACE_GRAPH) {
r_snap[0] = 0.0f;
r_snap[1] = 1.0;
r_snap[2] = 0.1f;
}
else {
r_snap[0] = 0.0f;
r_snap[1] = r_snap[2] = 1.0f;
}
}
/** \name Transform Translation
* \{ */
static void initTranslation(TransInfo *t)
{
if (t->spacetype == SPACE_ACTION) {
/* this space uses time translate */
BKE_report(t->reports,
RPT_ERROR,
"Use 'Time_Translate' transform mode instead of 'Translation' mode "
"for translating keyframes in Dope Sheet Editor");
t->state = TRANS_CANCEL;
}
t->mode = TFM_TRANSLATION;
t->transform = applyTranslation;
initMouseInputMode(t, &t->mouse, INPUT_VECTOR);
t->idx_max = (t->flag & T_2D_EDIT) ? 1 : 2;
t->num.flag = 0;
t->num.idx_max = t->idx_max;
copy_v3_v3(t->snap, t->snap_spatial);
copy_v3_fl(t->num.val_inc, t->snap[1]);
t->num.unit_sys = t->scene->unit.system;
if (t->spacetype == SPACE_VIEW3D) {
/* Handling units makes only sense in 3Dview... See T38877. */
t->num.unit_type[0] = B_UNIT_LENGTH;
t->num.unit_type[1] = B_UNIT_LENGTH;
t->num.unit_type[2] = B_UNIT_LENGTH;
}
else {
/* SPACE_GRAPH, SPACE_ACTION, etc. could use some time units, when we have them... */
t->num.unit_type[0] = B_UNIT_NONE;
t->num.unit_type[1] = B_UNIT_NONE;
t->num.unit_type[2] = B_UNIT_NONE;
}
}
static void headerTranslation(TransInfo *t, const float vec[3], char str[UI_MAX_DRAW_STR])
{
size_t ofs = 0;
char tvec[NUM_STR_REP_LEN * 3];
char distvec[NUM_STR_REP_LEN];
char autoik[NUM_STR_REP_LEN];
float dist;
if (hasNumInput(&t->num)) {
outputNumInput(&(t->num), tvec, &t->scene->unit);
dist = len_v3(t->num.val);
}
else {
float dvec[3];
copy_v3_v3(dvec, vec);
applyAspectRatio(t, dvec);
dist = len_v3(vec);
if (!(t->flag & T_2D_EDIT) && t->scene->unit.system) {
int i;
for (i = 0; i < 3; i++) {
bUnit_AsString2(&tvec[NUM_STR_REP_LEN * i],
NUM_STR_REP_LEN,
dvec[i] * t->scene->unit.scale_length,
4,
B_UNIT_LENGTH,
&t->scene->unit,
true);
}
}
else {
BLI_snprintf(&tvec[0], NUM_STR_REP_LEN, "%.4f", dvec[0]);
BLI_snprintf(&tvec[NUM_STR_REP_LEN], NUM_STR_REP_LEN, "%.4f", dvec[1]);
BLI_snprintf(&tvec[NUM_STR_REP_LEN * 2], NUM_STR_REP_LEN, "%.4f", dvec[2]);
}
}
if (!(t->flag & T_2D_EDIT) && t->scene->unit.system) {
bUnit_AsString2(distvec,
sizeof(distvec),
dist * t->scene->unit.scale_length,
4,
B_UNIT_LENGTH,
&t->scene->unit,
false);
}
else if (dist > 1e10f || dist < -1e10f) {
/* prevent string buffer overflow */
BLI_snprintf(distvec, NUM_STR_REP_LEN, "%.4e", dist);
}
else {
BLI_snprintf(distvec, NUM_STR_REP_LEN, "%.4f", dist);
}
if (t->flag & T_AUTOIK) {
short chainlen = t->settings->autoik_chainlen;
2019-04-22 09:19:45 +10:00
if (chainlen) {
BLI_snprintf(autoik, NUM_STR_REP_LEN, IFACE_("AutoIK-Len: %d"), chainlen);
2019-04-22 09:19:45 +10:00
}
else {
autoik[0] = '\0';
2019-04-22 09:19:45 +10:00
}
}
2019-04-22 09:19:45 +10:00
else {
autoik[0] = '\0';
2019-04-22 09:19:45 +10:00
}
if (t->con.mode & CON_APPLY) {
switch (t->num.idx_max) {
case 0:
ofs += BLI_snprintf(str + ofs,
UI_MAX_DRAW_STR - ofs,
"D: %s (%s)%s %s %s",
&tvec[0],
distvec,
t->con.text,
t->proptext,
autoik);
break;
case 1:
ofs += BLI_snprintf(str + ofs,
UI_MAX_DRAW_STR - ofs,
"D: %s D: %s (%s)%s %s %s",
&tvec[0],
&tvec[NUM_STR_REP_LEN],
distvec,
t->con.text,
t->proptext,
autoik);
break;
case 2:
ofs += BLI_snprintf(str + ofs,
UI_MAX_DRAW_STR - ofs,
"D: %s D: %s D: %s (%s)%s %s %s",
&tvec[0],
&tvec[NUM_STR_REP_LEN],
&tvec[NUM_STR_REP_LEN * 2],
distvec,
t->con.text,
t->proptext,
autoik);
break;
}
}
else {
if (t->flag & T_2D_EDIT) {
ofs += BLI_snprintf(str + ofs,
UI_MAX_DRAW_STR - ofs,
"Dx: %s Dy: %s (%s)%s %s",
&tvec[0],
&tvec[NUM_STR_REP_LEN],
distvec,
t->con.text,
t->proptext);
}
else {
ofs += BLI_snprintf(str + ofs,
UI_MAX_DRAW_STR - ofs,
"Dx: %s Dy: %s Dz: %s (%s)%s %s %s",
&tvec[0],
&tvec[NUM_STR_REP_LEN],
&tvec[NUM_STR_REP_LEN * 2],
distvec,
t->con.text,
t->proptext,
autoik);
}
}
if (t->flag & T_PROP_EDIT_ALL) {
ofs += BLI_snprintf(
str + ofs, UI_MAX_DRAW_STR - ofs, IFACE_(" Proportional size: %.2f"), t->prop_size);
}
if (t->spacetype == SPACE_NODE) {
SpaceNode *snode = (SpaceNode *)t->sa->spacedata.first;
if ((snode->flag & SNODE_SKIP_INSOFFSET) == 0) {
const char *str_old = BLI_strdup(str);
const char *str_dir = (snode->insert_ofs_dir == SNODE_INSERTOFS_DIR_RIGHT) ?
IFACE_("right") :
IFACE_("left");
char str_km[64];
WM_modalkeymap_items_to_string(
t->keymap, TFM_MODAL_INSERTOFS_TOGGLE_DIR, true, str_km, sizeof(str_km));
ofs += BLI_snprintf(str,
UI_MAX_DRAW_STR,
IFACE_("Auto-offset set to %s - press %s to toggle direction | %s"),
str_dir,
str_km,
str_old);
MEM_freeN((void *)str_old);
}
}
}
2015-01-20 22:41:30 +11:00
static void applyTranslationValue(TransInfo *t, const float vec[3])
{
const bool apply_snap_align_rotation = usingSnappingNormal(
t); // && (t->tsnap.status & POINT_INIT);
float tvec[3];
/* The ideal would be "apply_snap_align_rotation" only when a snap point is found
* so, maybe inside this function is not the best place to apply this rotation.
* but you need "handle snapping rotation before doing the translation" (really?) */
FOREACH_TRANS_DATA_CONTAINER (t, tc) {
float pivot[3];
if (apply_snap_align_rotation) {
copy_v3_v3(pivot, t->tsnap.snapTarget);
/* The pivot has to be in local-space (see T49494) */
if (tc->use_local_mat) {
mul_m4_v3(tc->imat, pivot);
}
}
TransData *td = tc->data;
for (int i = 0; i < tc->data_len; i++, td++) {
2019-04-22 09:19:45 +10:00
if (td->flag & TD_NOACTION) {
break;
2019-04-22 09:19:45 +10:00
}
2019-04-22 09:19:45 +10:00
if (td->flag & TD_SKIP) {
continue;
2019-04-22 09:19:45 +10:00
}
float rotate_offset[3] = {0};
bool use_rotate_offset = false;
/* handle snapping rotation before doing the translation */
if (apply_snap_align_rotation) {
float mat[3][3];
if (validSnappingNormal(t)) {
const float *original_normal;
/* In pose mode, we want to align normals with Y axis of bones... */
2019-04-22 09:19:45 +10:00
if (t->flag & T_POSE) {
original_normal = td->axismtx[1];
2019-04-22 09:19:45 +10:00
}
else {
original_normal = td->axismtx[2];
2019-04-22 09:19:45 +10:00
}
rotation_between_vecs_to_mat3(mat, original_normal, t->tsnap.snapNormal);
}
else {
unit_m3(mat);
}
ElementRotation_ex(t, tc, td, mat, pivot);
if (td->loc) {
use_rotate_offset = true;
sub_v3_v3v3(rotate_offset, td->loc, td->iloc);
}
}
if (t->con.applyVec) {
float pvec[3];
t->con.applyVec(t, tc, td, vec, tvec, pvec);
}
else {
copy_v3_v3(tvec, vec);
}
if (use_rotate_offset) {
add_v3_v3(tvec, rotate_offset);
}
mul_m3_v3(td->smtx, tvec);
if (t->options & CTX_GPENCIL_STROKES) {
/* grease pencil multiframe falloff */
bGPDstroke *gps = (bGPDstroke *)td->extra;
if (gps != NULL) {
mul_v3_fl(tvec, td->factor * gps->runtime.multi_frame_falloff);
}
else {
mul_v3_fl(tvec, td->factor);
}
}
else {
/* proportional editing falloff */
mul_v3_fl(tvec, td->factor);
}
protectedTransBits(td->protectflag, tvec);
2019-04-22 09:19:45 +10:00
if (td->loc) {
add_v3_v3v3(td->loc, td->iloc, tvec);
2019-04-22 09:19:45 +10:00
}
constraintTransLim(t, td);
}
}
}
static void applyTranslation(TransInfo *t, const int UNUSED(mval[2]))
{
char str[UI_MAX_DRAW_STR];
float value_final[3];
if (t->flag & T_AUTOVALUES) {
copy_v3_v3(t->values, t->auto_values);
}
else {
if ((t->con.mode & CON_APPLY) == 0) {
snapGridIncrement(t, t->values);
}
if (applyNumInput(&t->num, t->values)) {
removeAspectRatio(t, t->values);
}
applySnapping(t, t->values);
}
if (t->con.mode & CON_APPLY) {
float pvec[3] = {0.0f, 0.0f, 0.0f};
t->con.applyVec(t, NULL, NULL, t->values, value_final, pvec);
headerTranslation(t, pvec, str);
/* only so we have re-usable value with redo, see T46741. */
mul_v3_m3v3(t->values, t->con.imtx, value_final);
}
else {
headerTranslation(t, t->values, str);
copy_v3_v3(value_final, t->values);
}
/* don't use 't->values' now on */
applyTranslationValue(t, value_final);
/* evil hack - redo translation if clipping needed */
if (t->flag & T_CLIP_UV && clipUVTransform(t, value_final, 0)) {
applyTranslationValue(t, value_final);
/* In proportional edit it can happen that */
/* vertices in the radius of the brush end */
/* outside the clipping area */
/* XXX HACK - dg */
if (t->flag & T_PROP_EDIT_ALL) {
clipUVData(t);
}
}
recalcData(t);
ED_area_status_text(t->sa, str);
}
/** \} */
/* -------------------------------------------------------------------- */
/* Transform (Shrink-Fatten) */
/** \name Transform Shrink-Fatten
* \{ */
static void initShrinkFatten(TransInfo *t)
{
// If not in mesh edit mode, fallback to Resize
if ((t->flag & T_EDIT) == 0 || (t->obedit_type != OB_MESH)) {
initResize(t);
}
else {
t->mode = TFM_SHRINKFATTEN;
t->transform = applyShrinkFatten;
initMouseInputMode(t, &t->mouse, INPUT_VERTICAL_ABSOLUTE);
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = 1.0f;
t->snap[2] = t->snap[1] * 0.1f;
copy_v3_fl(t->num.val_inc, t->snap[1]);
t->num.unit_sys = t->scene->unit.system;
t->num.unit_type[0] = B_UNIT_LENGTH;
t->flag |= T_NO_CONSTRAINT;
}
}
static void applyShrinkFatten(TransInfo *t, const int UNUSED(mval[2]))
{
float distance;
int i;
char str[UI_MAX_DRAW_STR];
size_t ofs = 0;
distance = -t->values[0];
snapGridIncrement(t, &distance);
applyNumInput(&t->num, &distance);
t->values[0] = -distance;
/* header print for NumInput */
ofs += BLI_strncpy_rlen(str + ofs, IFACE_("Shrink/Fatten:"), sizeof(str) - ofs);
if (hasNumInput(&t->num)) {
char c[NUM_STR_REP_LEN];
outputNumInput(&(t->num), c, &t->scene->unit);
ofs += BLI_snprintf(str + ofs, sizeof(str) - ofs, " %s", c);
}
else {
/* default header print */
ofs += BLI_snprintf(str + ofs, sizeof(str) - ofs, " %.4f", distance);
}
if (t->proptext[0]) {
ofs += BLI_snprintf(str + ofs, sizeof(str) - ofs, " %s", t->proptext);
}
ofs += BLI_strncpy_rlen(str + ofs, ", (", sizeof(str) - ofs);
if (t->keymap) {
wmKeyMapItem *kmi = WM_modalkeymap_find_propvalue(t->keymap, TFM_MODAL_RESIZE);
if (kmi) {
ofs += WM_keymap_item_to_string(kmi, false, str + ofs, sizeof(str) - ofs);
}
}
BLI_snprintf(str + ofs,
sizeof(str) - ofs,
IFACE_(" or Alt) Even Thickness %s"),
WM_bool_as_string((t->flag & T_ALT_TRANSFORM) != 0));
/* done with header string */
FOREACH_TRANS_DATA_CONTAINER (t, tc) {
TransData *td = tc->data;
for (i = 0; i < tc->data_len; i++, td++) {
float tdistance; /* temp dist */
2019-04-22 09:19:45 +10:00
if (td->flag & TD_NOACTION) {
break;
2019-04-22 09:19:45 +10:00
}
2019-04-22 09:19:45 +10:00
if (td->flag & TD_SKIP) {
continue;
2019-04-22 09:19:45 +10:00
}
/* get the final offset */
tdistance = distance * td->factor;
if (td->ext && (t->flag & T_ALT_TRANSFORM) != 0) {
tdistance *= td->ext->isize[0]; /* shell factor */
}
madd_v3_v3v3fl(td->loc, td->iloc, td->axismtx[2], tdistance);
}
}
recalcData(t);
ED_area_status_text(t->sa, str);
}
/** \} */
/* -------------------------------------------------------------------- */
/* Transform (Tilt) */
/** \name Transform Tilt
* \{ */
static void initTilt(TransInfo *t)
{
t->mode = TFM_TILT;
t->transform = applyTilt;
initMouseInputMode(t, &t->mouse, INPUT_ANGLE);
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = DEG2RAD(5.0);
t->snap[2] = DEG2RAD(1.0);
copy_v3_fl(t->num.val_inc, t->snap[2]);
t->num.unit_sys = t->scene->unit.system;
t->num.unit_use_radians = (t->scene->unit.system_rotation == USER_UNIT_ROT_RADIANS);
t->num.unit_type[0] = B_UNIT_ROTATION;
t->flag |= T_NO_CONSTRAINT | T_NO_PROJECT;
}
static void applyTilt(TransInfo *t, const int UNUSED(mval[2]))
{
int i;
char str[UI_MAX_DRAW_STR];
float final;
final = t->values[0];
snapGridIncrement(t, &final);
applyNumInput(&t->num, &final);
t->values[0] = final;
if (hasNumInput(&t->num)) {
char c[NUM_STR_REP_LEN];
outputNumInput(&(t->num), c, &t->scene->unit);
BLI_snprintf(str, sizeof(str), IFACE_("Tilt: %s° %s"), &c[0], t->proptext);
/* XXX For some reason, this seems needed for this op, else RNA prop is not updated... :/ */
t->values[0] = final;
}
else {
BLI_snprintf(str, sizeof(str), IFACE_("Tilt: %.2f° %s"), RAD2DEGF(final), t->proptext);
}
FOREACH_TRANS_DATA_CONTAINER (t, tc) {
TransData *td = tc->data;
for (i = 0; i < tc->data_len; i++, td++) {
2019-04-22 09:19:45 +10:00
if (td->flag & TD_NOACTION) {
break;
2019-04-22 09:19:45 +10:00
}
2019-04-22 09:19:45 +10:00
if (td->flag & TD_SKIP) {
continue;
2019-04-22 09:19:45 +10:00
}
if (td->val) {
*td->val = td->ival + final * td->factor;
}
}
}
recalcData(t);
ED_area_status_text(t->sa, str);
}
/** \} */
/* -------------------------------------------------------------------- */
/* Transform (Curve Shrink/Fatten) */
/** \name Transform Curve Shrink/Fatten
* \{ */
static void initCurveShrinkFatten(TransInfo *t)
{
t->mode = TFM_CURVE_SHRINKFATTEN;
t->transform = applyCurveShrinkFatten;
initMouseInputMode(t, &t->mouse, INPUT_SPRING);
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = 0.1f;
t->snap[2] = t->snap[1] * 0.1f;
copy_v3_fl(t->num.val_inc, t->snap[1]);
t->num.unit_sys = t->scene->unit.system;
t->num.unit_type[0] = B_UNIT_NONE;
t->flag |= T_NO_ZERO;
#ifdef USE_NUM_NO_ZERO
t->num.val_flag[0] |= NUM_NO_ZERO;
#endif
t->flag |= T_NO_CONSTRAINT;
}
static void applyCurveShrinkFatten(TransInfo *t, const int UNUSED(mval[2]))
{
float ratio;
int i;
char str[UI_MAX_DRAW_STR];
ratio = t->values[0];
snapGridIncrement(t, &ratio);
applyNumInput(&t->num, &ratio);
t->values[0] = ratio;
/* header print for NumInput */
if (hasNumInput(&t->num)) {
char c[NUM_STR_REP_LEN];
outputNumInput(&(t->num), c, &t->scene->unit);
BLI_snprintf(str, sizeof(str), IFACE_("Shrink/Fatten: %s"), c);
}
else {
BLI_snprintf(str, sizeof(str), IFACE_("Shrink/Fatten: %3f"), ratio);
}
FOREACH_TRANS_DATA_CONTAINER (t, tc) {
TransData *td = tc->data;
for (i = 0; i < tc->data_len; i++, td++) {
2019-04-22 09:19:45 +10:00
if (td->flag & TD_NOACTION) {
break;
2019-04-22 09:19:45 +10:00
}
2019-04-22 09:19:45 +10:00
if (td->flag & TD_SKIP) {
continue;
2019-04-22 09:19:45 +10:00
}
if (td->val) {
*td->val = td->ival * ratio;
/* apply PET */
*td->val = (*td->val * td->factor) + ((1.0f - td->factor) * td->ival);
2019-04-22 09:19:45 +10:00
if (*td->val <= 0.0f) {
*td->val = 0.001f;
2019-04-22 09:19:45 +10:00
}
}
}
}
recalcData(t);
ED_area_status_text(t->sa, str);
}
/** \} */
/* -------------------------------------------------------------------- */
/* Transform (Mask Shrink/Fatten) */
/** \name Transform Mask Shrink/Fatten
* \{ */
static void initMaskShrinkFatten(TransInfo *t)
{
t->mode = TFM_MASK_SHRINKFATTEN;
t->transform = applyMaskShrinkFatten;
initMouseInputMode(t, &t->mouse, INPUT_SPRING);
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = 0.1f;
t->snap[2] = t->snap[1] * 0.1f;
copy_v3_fl(t->num.val_inc, t->snap[1]);
t->num.unit_sys = t->scene->unit.system;
t->num.unit_type[0] = B_UNIT_NONE;
t->flag |= T_NO_ZERO;
#ifdef USE_NUM_NO_ZERO
t->num.val_flag[0] |= NUM_NO_ZERO;
#endif
t->flag |= T_NO_CONSTRAINT;
}
static void applyMaskShrinkFatten(TransInfo *t, const int UNUSED(mval[2]))
{
float ratio;
int i;
bool initial_feather = false;
char str[UI_MAX_DRAW_STR];
ratio = t->values[0];
snapGridIncrement(t, &ratio);
applyNumInput(&t->num, &ratio);
t->values[0] = ratio;
/* header print for NumInput */
if (hasNumInput(&t->num)) {
char c[NUM_STR_REP_LEN];
outputNumInput(&(t->num), c, &t->scene->unit);
BLI_snprintf(str, sizeof(str), IFACE_("Feather Shrink/Fatten: %s"), c);
}
else {
BLI_snprintf(str, sizeof(str), IFACE_("Feather Shrink/Fatten: %3f"), ratio);
}
/* detect if no points have feather yet */
if (ratio > 1.0f) {
initial_feather = true;
FOREACH_TRANS_DATA_CONTAINER (t, tc) {
TransData *td = tc->data;
for (i = 0; i < tc->data_len; i++, td++) {
2019-04-22 09:19:45 +10:00
if (td->flag & TD_NOACTION) {
break;
2019-04-22 09:19:45 +10:00
}
2019-04-22 09:19:45 +10:00
if (td->flag & TD_SKIP) {
continue;
2019-04-22 09:19:45 +10:00
}
2019-04-22 09:19:45 +10:00
if (td->ival >= 0.001f) {
initial_feather = false;
2019-04-22 09:19:45 +10:00
}
}
}
}
/* apply shrink/fatten */
FOREACH_TRANS_DATA_CONTAINER (t, tc) {
TransData *td = tc->data;
for (td = tc->data, i = 0; i < tc->data_len; i++, td++) {
2019-04-22 09:19:45 +10:00
if (td->flag & TD_NOACTION) {
break;
2019-04-22 09:19:45 +10:00
}
2019-04-22 09:19:45 +10:00
if (td->flag & TD_SKIP) {
continue;
2019-04-22 09:19:45 +10:00
}
if (td->val) {
2019-04-22 09:19:45 +10:00
if (initial_feather) {
*td->val = td->ival + (ratio - 1.0f) * 0.01f;
2019-04-22 09:19:45 +10:00
}
else {
*td->val = td->ival * ratio;
2019-04-22 09:19:45 +10:00
}
/* apply PET */
*td->val = (*td->val * td->factor) + ((1.0f - td->factor) * td->ival);
2019-04-22 09:19:45 +10:00
if (*td->val <= 0.0f) {
*td->val = 0.001f;
2019-04-22 09:19:45 +10:00
}
}
}
}
recalcData(t);
ED_area_status_text(t->sa, str);
}
/** \} */
/* -------------------------------------------------------------------- */
/* Transform (GPencil Shrink/Fatten) */
/** \name Transform GPencil Strokes Shrink/Fatten
* \{ */
static void initGPShrinkFatten(TransInfo *t)
{
t->mode = TFM_GPENCIL_SHRINKFATTEN;
t->transform = applyGPShrinkFatten;
initMouseInputMode(t, &t->mouse, INPUT_SPRING);
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = 0.1f;
t->snap[2] = t->snap[1] * 0.1f;
copy_v3_fl(t->num.val_inc, t->snap[1]);
t->num.unit_sys = t->scene->unit.system;
t->num.unit_type[0] = B_UNIT_NONE;
t->flag |= T_NO_ZERO;
#ifdef USE_NUM_NO_ZERO
t->num.val_flag[0] |= NUM_NO_ZERO;
#endif
t->flag |= T_NO_CONSTRAINT;
}
static void applyGPShrinkFatten(TransInfo *t, const int UNUSED(mval[2]))
{
float ratio;
int i;
char str[UI_MAX_DRAW_STR];
ratio = t->values[0];
snapGridIncrement(t, &ratio);
applyNumInput(&t->num, &ratio);
t->values[0] = ratio;
/* header print for NumInput */
if (hasNumInput(&t->num)) {
char c[NUM_STR_REP_LEN];
outputNumInput(&(t->num), c, &t->scene->unit);
BLI_snprintf(str, sizeof(str), IFACE_("Shrink/Fatten: %s"), c);
}
else {
BLI_snprintf(str, sizeof(str), IFACE_("Shrink/Fatten: %3f"), ratio);
}
FOREACH_TRANS_DATA_CONTAINER (t, tc) {
TransData *td = tc->data;
for (i = 0; i < tc->data_len; i++, td++) {
2019-04-22 09:19:45 +10:00
if (td->flag & TD_NOACTION) {
break;
2019-04-22 09:19:45 +10:00
}
2019-04-22 09:19:45 +10:00
if (td->flag & TD_SKIP) {
continue;
2019-04-22 09:19:45 +10:00
}
if (td->val) {
*td->val = td->ival * ratio;
/* apply PET */
*td->val = (*td->val * td->factor) + ((1.0f - td->factor) * td->ival);
2019-04-22 09:19:45 +10:00
if (*td->val <= 0.0f) {
*td->val = 0.001f;
2019-04-22 09:19:45 +10:00
}
}
}
}
ED_area_status_text(t->sa, str);
}
/** \} */
/* -------------------------------------------------------------------- */
/* Transform (GPencil Opacity) */
/** \name Transform GPencil Strokes Opacity
* \{ */
static void initGPOpacity(TransInfo *t)
{
t->mode = TFM_GPENCIL_OPACITY;
t->transform = applyGPOpacity;
initMouseInputMode(t, &t->mouse, INPUT_SPRING);
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = 0.1f;
t->snap[2] = t->snap[1] * 0.1f;
copy_v3_fl(t->num.val_inc, t->snap[1]);
t->num.unit_sys = t->scene->unit.system;
t->num.unit_type[0] = B_UNIT_NONE;
t->flag |= T_NO_ZERO;
#ifdef USE_NUM_NO_ZERO
t->num.val_flag[0] |= NUM_NO_ZERO;
#endif
t->flag |= T_NO_CONSTRAINT;
}
static void applyGPOpacity(TransInfo *t, const int UNUSED(mval[2]))
{
float ratio;
int i;
char str[UI_MAX_DRAW_STR];
ratio = t->values[0];
snapGridIncrement(t, &ratio);
applyNumInput(&t->num, &ratio);
t->values[0] = ratio;
/* header print for NumInput */
if (hasNumInput(&t->num)) {
char c[NUM_STR_REP_LEN];
outputNumInput(&(t->num), c, &t->scene->unit);
BLI_snprintf(str, sizeof(str), IFACE_("Opacity: %s"), c);
}
else {
BLI_snprintf(str, sizeof(str), IFACE_("Opacity: %3f"), ratio);
}
FOREACH_TRANS_DATA_CONTAINER (t, tc) {
TransData *td = tc->data;
for (i = 0; i < tc->data_len; i++, td++) {
2019-04-22 09:19:45 +10:00
if (td->flag & TD_NOACTION) {
break;
2019-04-22 09:19:45 +10:00
}
2019-04-22 09:19:45 +10:00
if (td->flag & TD_SKIP) {
continue;
2019-04-22 09:19:45 +10:00
}
if (td->val) {
*td->val = td->ival * ratio;
/* apply PET */
*td->val = (*td->val * td->factor) + ((1.0f - td->factor) * td->ival);
CLAMP(*td->val, 0.0f, 1.0f);
}
}
}
ED_area_status_text(t->sa, str);
}
/** \} */
/* -------------------------------------------------------------------- */
/* Transform (Push/Pull) */
/** \name Transform Push/Pull
* \{ */
static void initPushPull(TransInfo *t)
{
t->mode = TFM_PUSHPULL;
t->transform = applyPushPull;
initMouseInputMode(t, &t->mouse, INPUT_VERTICAL_ABSOLUTE);
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = 1.0f;
t->snap[2] = t->snap[1] * 0.1f;
copy_v3_fl(t->num.val_inc, t->snap[1]);
t->num.unit_sys = t->scene->unit.system;
t->num.unit_type[0] = B_UNIT_LENGTH;
}
static void applyPushPull(TransInfo *t, const int UNUSED(mval[2]))
{
float vec[3], axis_global[3];
float distance;
int i;
char str[UI_MAX_DRAW_STR];
distance = t->values[0];
snapGridIncrement(t, &distance);
applyNumInput(&t->num, &distance);
t->values[0] = distance;
/* header print for NumInput */
if (hasNumInput(&t->num)) {
char c[NUM_STR_REP_LEN];
outputNumInput(&(t->num), c, &t->scene->unit);
BLI_snprintf(str, sizeof(str), IFACE_("Push/Pull: %s%s %s"), c, t->con.text, t->proptext);
}
else {
/* default header print */
BLI_snprintf(
str, sizeof(str), IFACE_("Push/Pull: %.4f%s %s"), distance, t->con.text, t->proptext);
}
if (t->con.applyRot && t->con.mode & CON_APPLY) {
t->con.applyRot(t, NULL, NULL, axis_global, NULL);
}
FOREACH_TRANS_DATA_CONTAINER (t, tc) {
TransData *td = tc->data;
for (i = 0; i < tc->data_len; i++, td++) {
2019-04-22 09:19:45 +10:00
if (td->flag & TD_NOACTION) {
break;
2019-04-22 09:19:45 +10:00
}
2019-04-22 09:19:45 +10:00
if (td->flag & TD_SKIP) {
continue;
2019-04-22 09:19:45 +10:00
}
sub_v3_v3v3(vec, tc->center_local, td->center);
if (t->con.applyRot && t->con.mode & CON_APPLY) {
float axis[3];
copy_v3_v3(axis, axis_global);
t->con.applyRot(t, tc, td, axis, NULL);
mul_m3_v3(td->smtx, axis);
if (isLockConstraint(t)) {
float dvec[3];
project_v3_v3v3(dvec, vec, axis);
sub_v3_v3(vec, dvec);
}
else {
project_v3_v3v3(vec, vec, axis);
}
}
normalize_v3_length(vec, distance * td->factor);
add_v3_v3v3(td->loc, td->iloc, vec);
}
}
recalcData(t);
ED_area_status_text(t->sa, str);
}
/** \} */
/* -------------------------------------------------------------------- */
/* Transform (Bevel Weight) */
/** \name Transform Bevel Weight
* \{ */
static void initBevelWeight(TransInfo *t)
{
t->mode = TFM_BWEIGHT;
t->transform = applyBevelWeight;
initMouseInputMode(t, &t->mouse, INPUT_SPRING_DELTA);
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = 0.1f;
t->snap[2] = t->snap[1] * 0.1f;
copy_v3_fl(t->num.val_inc, t->snap[1]);
t->num.unit_sys = t->scene->unit.system;
t->num.unit_type[0] = B_UNIT_NONE;
t->flag |= T_NO_CONSTRAINT | T_NO_PROJECT;
}
static void applyBevelWeight(TransInfo *t, const int UNUSED(mval[2]))
{
float weight;
int i;
char str[UI_MAX_DRAW_STR];
weight = t->values[0];
CLAMP_MAX(weight, 1.0f);
snapGridIncrement(t, &weight);
applyNumInput(&t->num, &weight);
t->values[0] = weight;
/* header print for NumInput */
if (hasNumInput(&t->num)) {
char c[NUM_STR_REP_LEN];
outputNumInput(&(t->num), c, &t->scene->unit);
2019-04-22 09:19:45 +10:00
if (weight >= 0.0f) {
BLI_snprintf(str, sizeof(str), IFACE_("Bevel Weight: +%s %s"), c, t->proptext);
2019-04-22 09:19:45 +10:00
}
else {
BLI_snprintf(str, sizeof(str), IFACE_("Bevel Weight: %s %s"), c, t->proptext);
2019-04-22 09:19:45 +10:00
}
}
else {
/* default header print */
2019-04-22 09:19:45 +10:00
if (weight >= 0.0f) {
BLI_snprintf(str, sizeof(str), IFACE_("Bevel Weight: +%.3f %s"), weight, t->proptext);
2019-04-22 09:19:45 +10:00
}
else {
BLI_snprintf(str, sizeof(str), IFACE_("Bevel Weight: %.3f %s"), weight, t->proptext);
2019-04-22 09:19:45 +10:00
}
}
FOREACH_TRANS_DATA_CONTAINER (t, tc) {
TransData *td = tc->data;
for (i = 0; i < tc->data_len; i++, td++) {
2019-04-22 09:19:45 +10:00
if (td->flag & TD_NOACTION) {
break;
2019-04-22 09:19:45 +10:00
}
if (td->val) {
*td->val = td->ival + weight * td->factor;
2019-04-22 09:19:45 +10:00
if (*td->val < 0.0f) {
*td->val = 0.0f;
2019-04-22 09:19:45 +10:00
}
if (*td->val > 1.0f) {
*td->val = 1.0f;
2019-04-22 09:19:45 +10:00
}
}
}
}
recalcData(t);
ED_area_status_text(t->sa, str);
}
/** \} */
/* -------------------------------------------------------------------- */
/* Transform (Crease) */
/** \name Transform Crease
* \{ */
static void initCrease(TransInfo *t)
{
t->mode = TFM_CREASE;
t->transform = applyCrease;
initMouseInputMode(t, &t->mouse, INPUT_SPRING_DELTA);
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = 0.1f;
t->snap[2] = t->snap[1] * 0.1f;
copy_v3_fl(t->num.val_inc, t->snap[1]);
t->num.unit_sys = t->scene->unit.system;
t->num.unit_type[0] = B_UNIT_NONE;
t->flag |= T_NO_CONSTRAINT | T_NO_PROJECT;
}
static void applyCrease(TransInfo *t, const int UNUSED(mval[2]))
{
float crease;
int i;
char str[UI_MAX_DRAW_STR];
crease = t->values[0];
CLAMP_MAX(crease, 1.0f);
snapGridIncrement(t, &crease);
applyNumInput(&t->num, &crease);
t->values[0] = crease;
/* header print for NumInput */
if (hasNumInput(&t->num)) {
char c[NUM_STR_REP_LEN];
outputNumInput(&(t->num), c, &t->scene->unit);
2019-04-22 09:19:45 +10:00
if (crease >= 0.0f) {
BLI_snprintf(str, sizeof(str), IFACE_("Crease: +%s %s"), c, t->proptext);
2019-04-22 09:19:45 +10:00
}
else {
BLI_snprintf(str, sizeof(str), IFACE_("Crease: %s %s"), c, t->proptext);
2019-04-22 09:19:45 +10:00
}
}
else {
/* default header print */
2019-04-22 09:19:45 +10:00
if (crease >= 0.0f) {
BLI_snprintf(str, sizeof(str), IFACE_("Crease: +%.3f %s"), crease, t->proptext);
2019-04-22 09:19:45 +10:00
}
else {
BLI_snprintf(str, sizeof(str), IFACE_("Crease: %.3f %s"), crease, t->proptext);
2019-04-22 09:19:45 +10:00
}
}
FOREACH_TRANS_DATA_CONTAINER (t, tc) {
TransData *td = tc->data;
for (i = 0; i < tc->data_len; i++, td++) {
2019-04-22 09:19:45 +10:00
if (td->flag & TD_NOACTION) {
break;
2019-04-22 09:19:45 +10:00
}
2019-04-22 09:19:45 +10:00
if (td->flag & TD_SKIP) {
continue;
2019-04-22 09:19:45 +10:00
}
if (td->val) {
*td->val = td->ival + crease * td->factor;
2019-04-22 09:19:45 +10:00
if (*td->val < 0.0f) {
*td->val = 0.0f;
2019-04-22 09:19:45 +10:00
}
if (*td->val > 1.0f) {
*td->val = 1.0f;
2019-04-22 09:19:45 +10:00
}
}
}
}
recalcData(t);
ED_area_status_text(t->sa, str);
}
/** \} */
/* -------------------------------------------------------------------- */
/* Transform (EditBone (B-bone) width scaling) */
/** \name Transform B-bone width scaling
* \{ */
static void initBoneSize(TransInfo *t)
{
t->mode = TFM_BONESIZE;
t->transform = applyBoneSize;
initMouseInputMode(t, &t->mouse, INPUT_SPRING_FLIP);
t->idx_max = 2;
t->num.idx_max = 2;
t->num.val_flag[0] |= NUM_NULL_ONE;
t->num.val_flag[1] |= NUM_NULL_ONE;
t->num.val_flag[2] |= NUM_NULL_ONE;
t->num.flag |= NUM_AFFECT_ALL;
t->snap[0] = 0.0f;
t->snap[1] = 0.1f;
t->snap[2] = t->snap[1] * 0.1f;
copy_v3_fl(t->num.val_inc, t->snap[1]);
t->num.unit_sys = t->scene->unit.system;
t->num.unit_type[0] = B_UNIT_NONE;
t->num.unit_type[1] = B_UNIT_NONE;
t->num.unit_type[2] = B_UNIT_NONE;
}
static void headerBoneSize(TransInfo *t, const float vec[3], char str[UI_MAX_DRAW_STR])
{
char tvec[NUM_STR_REP_LEN * 3];
if (hasNumInput(&t->num)) {
outputNumInput(&(t->num), tvec, &t->scene->unit);
}
else {
BLI_snprintf(&tvec[0], NUM_STR_REP_LEN, "%.4f", vec[0]);
BLI_snprintf(&tvec[NUM_STR_REP_LEN], NUM_STR_REP_LEN, "%.4f", vec[1]);
BLI_snprintf(&tvec[NUM_STR_REP_LEN * 2], NUM_STR_REP_LEN, "%.4f", vec[2]);
}
/* hmm... perhaps the y-axis values don't need to be shown? */
if (t->con.mode & CON_APPLY) {
2019-04-22 09:19:45 +10:00
if (t->num.idx_max == 0) {
BLI_snprintf(
str, UI_MAX_DRAW_STR, IFACE_("ScaleB: %s%s %s"), &tvec[0], t->con.text, t->proptext);
2019-04-22 09:19:45 +10:00
}
else {
BLI_snprintf(str,
UI_MAX_DRAW_STR,
IFACE_("ScaleB: %s : %s : %s%s %s"),
&tvec[0],
&tvec[NUM_STR_REP_LEN],
&tvec[NUM_STR_REP_LEN * 2],
t->con.text,
t->proptext);
2019-04-22 09:19:45 +10:00
}
}
else {
BLI_snprintf(str,
UI_MAX_DRAW_STR,
IFACE_("ScaleB X: %s Y: %s Z: %s%s %s"),
&tvec[0],
&tvec[NUM_STR_REP_LEN],
&tvec[NUM_STR_REP_LEN * 2],
t->con.text,
t->proptext);
}
}
static void ElementBoneSize(TransInfo *t, TransDataContainer *tc, TransData *td, float mat[3][3])
{
float tmat[3][3], smat[3][3], oldy;
float sizemat[3][3];
mul_m3_m3m3(smat, mat, td->mtx);
mul_m3_m3m3(tmat, td->smtx, smat);
if (t->con.applySize) {
t->con.applySize(t, tc, td, tmat);
}
/* we've tucked the scale in loc */
oldy = td->iloc[1];
size_to_mat3(sizemat, td->iloc);
mul_m3_m3m3(tmat, tmat, sizemat);
mat3_to_size(td->loc, tmat);
td->loc[1] = oldy;
}
static void applyBoneSize(TransInfo *t, const int UNUSED(mval[2]))
{
float size[3], mat[3][3];
float ratio = t->values[0];
int i;
char str[UI_MAX_DRAW_STR];
copy_v3_fl(size, ratio);
2018-05-13 06:44:03 +02:00
snapGridIncrement(t, size);
2018-05-13 06:44:03 +02:00
if (applyNumInput(&t->num, size)) {
constraintNumInput(t, size);
}
2018-05-13 06:44:03 +02:00
copy_v3_v3(t->values, size);
size_to_mat3(mat, size);
2018-05-13 06:44:03 +02:00
if (t->con.applySize) {
t->con.applySize(t, NULL, NULL, mat);
}
2018-05-13 06:44:03 +02:00
copy_m3_m3(t->mat, mat); // used in gizmo
2018-05-13 06:44:03 +02:00
headerBoneSize(t, size, str);
FOREACH_TRANS_DATA_CONTAINER (t, tc) {
TransData *td = tc->data;
for (i = 0; i < tc->data_len; i++, td++) {
2019-04-22 09:19:45 +10:00
if (td->flag & TD_NOACTION) {
break;
2019-04-22 09:19:45 +10:00
}
2019-04-22 09:19:45 +10:00
if (td->flag & TD_SKIP) {
continue;
2019-04-22 09:19:45 +10:00
}
ElementBoneSize(t, tc, td, mat);
}
}
recalcData(t);
2018-05-13 06:44:03 +02:00
ED_area_status_text(t->sa, str);
}
/** \} */
/* -------------------------------------------------------------------- */
/* Transform (Bone Envelope) */
/** \name Transform Bone Envelope
* \{ */
static void initBoneEnvelope(TransInfo *t)
{
t->mode = TFM_BONE_ENVELOPE;
t->transform = applyBoneEnvelope;
2018-05-13 06:44:03 +02:00
initMouseInputMode(t, &t->mouse, INPUT_SPRING);
2018-05-13 06:44:03 +02:00
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = 0.1f;
t->snap[2] = t->snap[1] * 0.1f;
2018-05-13 06:44:03 +02:00
copy_v3_fl(t->num.val_inc, t->snap[1]);
t->num.unit_sys = t->scene->unit.system;
t->num.unit_type[0] = B_UNIT_NONE;
t->flag |= T_NO_CONSTRAINT | T_NO_PROJECT;
}
static void applyBoneEnvelope(TransInfo *t, const int UNUSED(mval[2]))
{
float ratio;
int i;
char str[UI_MAX_DRAW_STR];
2018-05-13 06:44:03 +02:00
ratio = t->values[0];
2018-05-13 06:44:03 +02:00
snapGridIncrement(t, &ratio);
2018-05-13 06:44:03 +02:00
applyNumInput(&t->num, &ratio);
2018-05-13 06:44:03 +02:00
t->values[0] = ratio;
/* header print for NumInput */
if (hasNumInput(&t->num)) {
char c[NUM_STR_REP_LEN];
2018-05-13 06:44:03 +02:00
outputNumInput(&(t->num), c, &t->scene->unit);
BLI_snprintf(str, sizeof(str), IFACE_("Envelope: %s"), c);
}
else {
BLI_snprintf(str, sizeof(str), IFACE_("Envelope: %3f"), ratio);
}
FOREACH_TRANS_DATA_CONTAINER (t, tc) {
TransData *td = tc->data;
for (i = 0; i < tc->data_len; i++, td++) {
2019-04-22 09:19:45 +10:00
if (td->flag & TD_NOACTION) {
break;
2019-04-22 09:19:45 +10:00
}
2019-04-22 09:19:45 +10:00
if (td->flag & TD_SKIP) {
continue;
2019-04-22 09:19:45 +10:00
}
if (td->val) {
/* if the old/original value was 0.0f, then just use ratio */
2019-04-22 09:19:45 +10:00
if (td->ival) {
*td->val = td->ival * ratio;
2019-04-22 09:19:45 +10:00
}
else {
*td->val = ratio;
2019-04-22 09:19:45 +10:00
}
}
}
}
recalcData(t);
2018-05-13 06:44:03 +02:00
ED_area_status_text(t->sa, str);
}
/** \} */
/* -------------------------------------------------------------------- */
/* Original Data Store */
/** \name Orig-Data Store Utility Functions
* \{ */
static void slide_origdata_init_flag(TransInfo *t, TransDataContainer *tc, SlideOrigData *sod)
{
BMEditMesh *em = BKE_editmesh_from_object(tc->obedit);
BMesh *bm = em->bm;
const bool has_layer_math = CustomData_has_math(&bm->ldata);
const int cd_loop_mdisp_offset = CustomData_get_offset(&bm->ldata, CD_MDISPS);
if ((t->settings->uvcalc_flag & UVCALC_TRANSFORM_CORRECT) &&
/* don't do this at all for non-basis shape keys, too easy to
* accidentally break uv maps or vertex colors then */
(bm->shapenr <= 1) && (has_layer_math || (cd_loop_mdisp_offset != -1))) {
sod->use_origfaces = true;
sod->cd_loop_mdisp_offset = cd_loop_mdisp_offset;
}
else {
sod->use_origfaces = false;
sod->cd_loop_mdisp_offset = -1;
}
}
static void slide_origdata_init_data(TransDataContainer *tc, SlideOrigData *sod)
{
if (sod->use_origfaces) {
BMEditMesh *em = BKE_editmesh_from_object(tc->obedit);
BMesh *bm = em->bm;
sod->origfaces = BLI_ghash_ptr_new(__func__);
sod->bm_origfaces = BM_mesh_create(&bm_mesh_allocsize_default,
&((struct BMeshCreateParams){
.use_toolflags = false,
}));
/* we need to have matching customdata */
BM_mesh_copy_init_customdata(sod->bm_origfaces, bm, NULL);
}
}
static void slide_origdata_create_data_vert(BMesh *bm,
SlideOrigData *sod,
TransDataGenericSlideVert *sv)
{
BMIter liter;
int j, l_num;
float *loop_weights;
/* copy face data */
// BM_ITER_ELEM (l, &liter, sv->v, BM_LOOPS_OF_VERT) {
BM_iter_init(&liter, bm, BM_LOOPS_OF_VERT, sv->v);
l_num = liter.count;
loop_weights = BLI_array_alloca(loop_weights, l_num);
for (j = 0; j < l_num; j++) {
BMLoop *l = BM_iter_step(&liter);
BMLoop *l_prev, *l_next;
void **val_p;
if (!BLI_ghash_ensure_p(sod->origfaces, l->f, &val_p)) {
BMFace *f_copy = BM_face_copy(sod->bm_origfaces, bm, l->f, true, true);
*val_p = f_copy;
}
if ((l_prev = BM_loop_find_prev_nodouble(l, l->next, FLT_EPSILON)) &&
(l_next = BM_loop_find_next_nodouble(l, l_prev, FLT_EPSILON))) {
loop_weights[j] = angle_v3v3v3(l_prev->v->co, l->v->co, l_next->v->co);
}
else {
loop_weights[j] = 0.0f;
}
}
/* store cd_loop_groups */
if (sod->layer_math_map_num && (l_num != 0)) {
sv->cd_loop_groups = BLI_memarena_alloc(sod->arena, sod->layer_math_map_num * sizeof(void *));
for (j = 0; j < sod->layer_math_map_num; j++) {
const int layer_nr = sod->layer_math_map[j];
sv->cd_loop_groups[j] = BM_vert_loop_groups_data_layer_create(
bm, sv->v, layer_nr, loop_weights, sod->arena);
}
}
else {
sv->cd_loop_groups = NULL;
}
BLI_ghash_insert(sod->origverts, sv->v, sv);
}
static void slide_origdata_create_data(TransDataContainer *tc,
SlideOrigData *sod,
TransDataGenericSlideVert *sv_array,
unsigned int v_stride,
unsigned int v_num)
{
if (sod->use_origfaces) {
BMEditMesh *em = BKE_editmesh_from_object(tc->obedit);
BMesh *bm = em->bm;
unsigned int i;
TransDataGenericSlideVert *sv;
int layer_index_dst;
int j;
layer_index_dst = 0;
if (CustomData_has_math(&bm->ldata)) {
/* over alloc, only 'math' layers are indexed */
sod->layer_math_map = MEM_mallocN(bm->ldata.totlayer * sizeof(int), __func__);
for (j = 0; j < bm->ldata.totlayer; j++) {
if (CustomData_layer_has_math(&bm->ldata, j)) {
sod->layer_math_map[layer_index_dst++] = j;
}
}
BLI_assert(layer_index_dst != 0);
}
sod->layer_math_map_num = layer_index_dst;
sod->arena = BLI_memarena_new(BLI_MEMARENA_STD_BUFSIZE, __func__);
sod->origverts = BLI_ghash_ptr_new_ex(__func__, v_num);
for (i = 0, sv = sv_array; i < v_num; i++, sv = POINTER_OFFSET(sv, v_stride)) {
slide_origdata_create_data_vert(bm, sod, sv);
}
if (tc->mirror.axis_flag) {
TransData *td = tc->data;
TransDataGenericSlideVert *sv_mirror;
sod->sv_mirror = MEM_callocN(sizeof(*sv_mirror) * tc->data_len, __func__);
sod->totsv_mirror = tc->data_len;
sv_mirror = sod->sv_mirror;
for (i = 0; i < tc->data_len; i++, td++) {
BMVert *eve = td->extra;
2019-04-17 08:44:58 +02:00
/* Check the vertex has been used since both sides
* of the mirror may be selected & sliding. */
if (eve && !BLI_ghash_haskey(sod->origverts, eve)) {
sv_mirror->v = eve;
copy_v3_v3(sv_mirror->co_orig_3d, eve->co);
slide_origdata_create_data_vert(bm, sod, sv_mirror);
sv_mirror++;
}
else {
sod->totsv_mirror--;
}
}
if (sod->totsv_mirror == 0) {
MEM_freeN(sod->sv_mirror);
sod->sv_mirror = NULL;
}
}
}
}
/**
* If we're sliding the vert, return its original location, if not, the current location is good.
*/
static const float *slide_origdata_orig_vert_co(SlideOrigData *sod, BMVert *v)
{
TransDataGenericSlideVert *sv = BLI_ghash_lookup(sod->origverts, v);
return sv ? sv->co_orig_3d : v->co;
}
static void slide_origdata_interp_data_vert(SlideOrigData *sod,
BMesh *bm,
bool is_final,
TransDataGenericSlideVert *sv)
{
BMIter liter;
int j, l_num;
float *loop_weights;
const bool is_moved = (len_squared_v3v3(sv->v->co, sv->co_orig_3d) > FLT_EPSILON);
const bool do_loop_weight = sod->layer_math_map_num && is_moved;
const bool do_loop_mdisps = is_final && is_moved && (sod->cd_loop_mdisp_offset != -1);
const float *v_proj_axis = sv->v->no;
/* original (l->prev, l, l->next) projections for each loop ('l' remains unchanged) */
float v_proj[3][3];
if (do_loop_weight || do_loop_mdisps) {
project_plane_normalized_v3_v3v3(v_proj[1], sv->co_orig_3d, v_proj_axis);
}
// BM_ITER_ELEM (l, &liter, sv->v, BM_LOOPS_OF_VERT)
BM_iter_init(&liter, bm, BM_LOOPS_OF_VERT, sv->v);
l_num = liter.count;
loop_weights = do_loop_weight ? BLI_array_alloca(loop_weights, l_num) : NULL;
for (j = 0; j < l_num; j++) {
BMFace *f_copy; /* the copy of 'f' */
BMLoop *l = BM_iter_step(&liter);
f_copy = BLI_ghash_lookup(sod->origfaces, l->f);
/* only loop data, no vertex data since that contains shape keys,
* and we do not want to mess up other shape keys */
BM_loop_interp_from_face(bm, l, f_copy, false, false);
/* make sure face-attributes are correct (e.g. MTexPoly) */
BM_elem_attrs_copy_ex(sod->bm_origfaces, bm, f_copy, l->f, 0x0, CD_MASK_NORMAL);
/* weight the loop */
if (do_loop_weight) {
const float eps = 1.0e-8f;
const BMLoop *l_prev = l->prev;
const BMLoop *l_next = l->next;
const float *co_prev = slide_origdata_orig_vert_co(sod, l_prev->v);
const float *co_next = slide_origdata_orig_vert_co(sod, l_next->v);
bool co_prev_ok;
bool co_next_ok;
/* In the unlikely case that we're next to a zero length edge -
* walk around the to the next.
*
* Since we only need to check if the vertex is in this corner,
* its not important _which_ loop - as long as its not overlapping
* 'sv->co_orig_3d', see: T45096. */
project_plane_normalized_v3_v3v3(v_proj[0], co_prev, v_proj_axis);
while (UNLIKELY(((co_prev_ok = (len_squared_v3v3(v_proj[1], v_proj[0]) > eps)) == false) &&
((l_prev = l_prev->prev) != l->next))) {
co_prev = slide_origdata_orig_vert_co(sod, l_prev->v);
project_plane_normalized_v3_v3v3(v_proj[0], co_prev, v_proj_axis);
}
project_plane_normalized_v3_v3v3(v_proj[2], co_next, v_proj_axis);
while (UNLIKELY(((co_next_ok = (len_squared_v3v3(v_proj[1], v_proj[2]) > eps)) == false) &&
((l_next = l_next->next) != l->prev))) {
co_next = slide_origdata_orig_vert_co(sod, l_next->v);
project_plane_normalized_v3_v3v3(v_proj[2], co_next, v_proj_axis);
}
if (co_prev_ok && co_next_ok) {
const float dist = dist_signed_squared_to_corner_v3v3v3(
sv->v->co, UNPACK3(v_proj), v_proj_axis);
loop_weights[j] = (dist >= 0.0f) ? 1.0f : ((dist <= -eps) ? 0.0f : (1.0f + (dist / eps)));
if (UNLIKELY(!isfinite(loop_weights[j]))) {
loop_weights[j] = 0.0f;
}
}
else {
loop_weights[j] = 0.0f;
}
}
}
if (sod->layer_math_map_num) {
if (do_loop_weight) {
for (j = 0; j < sod->layer_math_map_num; j++) {
BM_vert_loop_groups_data_layer_merge_weights(
bm, sv->cd_loop_groups[j], sod->layer_math_map[j], loop_weights);
}
}
else {
for (j = 0; j < sod->layer_math_map_num; j++) {
BM_vert_loop_groups_data_layer_merge(bm, sv->cd_loop_groups[j], sod->layer_math_map[j]);
}
}
}
/* Special handling for multires
*
* Interpolate from every other loop (not ideal)
* However values will only be taken from loops which overlap other mdisps.
* */
if (do_loop_mdisps) {
float(*faces_center)[3] = BLI_array_alloca(faces_center, l_num);
BMLoop *l;
BM_ITER_ELEM_INDEX (l, &liter, sv->v, BM_LOOPS_OF_VERT, j) {
BM_face_calc_center_median(l->f, faces_center[j]);
}
BM_ITER_ELEM_INDEX (l, &liter, sv->v, BM_LOOPS_OF_VERT, j) {
BMFace *f_copy = BLI_ghash_lookup(sod->origfaces, l->f);
float f_copy_center[3];
BMIter liter_other;
BMLoop *l_other;
int j_other;
BM_face_calc_center_median(f_copy, f_copy_center);
BM_ITER_ELEM_INDEX (l_other, &liter_other, sv->v, BM_LOOPS_OF_VERT, j_other) {
BM_face_interp_multires_ex(bm,
l_other->f,
f_copy,
faces_center[j_other],
f_copy_center,
sod->cd_loop_mdisp_offset);
}
}
}
}
static void slide_origdata_interp_data(Object *obedit,
SlideOrigData *sod,
TransDataGenericSlideVert *sv,
unsigned int v_stride,
unsigned int v_num,
bool is_final)
{
if (sod->use_origfaces) {
BMEditMesh *em = BKE_editmesh_from_object(obedit);
BMesh *bm = em->bm;
unsigned int i;
const bool has_mdisps = (sod->cd_loop_mdisp_offset != -1);
for (i = 0; i < v_num; i++, sv = POINTER_OFFSET(sv, v_stride)) {
if (sv->cd_loop_groups || has_mdisps) {
slide_origdata_interp_data_vert(sod, bm, is_final, sv);
}
}
if (sod->sv_mirror) {
sv = sod->sv_mirror;
for (i = 0; i < v_num; i++, sv++) {
if (sv->cd_loop_groups || has_mdisps) {
slide_origdata_interp_data_vert(sod, bm, is_final, sv);
}
}
}
}
}
static void slide_origdata_free_date(SlideOrigData *sod)
{
if (sod->use_origfaces) {
if (sod->bm_origfaces) {
BM_mesh_free(sod->bm_origfaces);
sod->bm_origfaces = NULL;
}
if (sod->origfaces) {
BLI_ghash_free(sod->origfaces, NULL, NULL);
sod->origfaces = NULL;
}
if (sod->origverts) {
BLI_ghash_free(sod->origverts, NULL, NULL);
sod->origverts = NULL;
}
if (sod->arena) {
BLI_memarena_free(sod->arena);
sod->arena = NULL;
}
MEM_SAFE_FREE(sod->layer_math_map);
MEM_SAFE_FREE(sod->sv_mirror);
}
}
/** \} */
/* -------------------------------------------------------------------- */
/* Transform (Edge Slide) */
/** \name Transform Edge Slide
* \{ */
static void calcEdgeSlideCustomPoints(struct TransInfo *t)
{
EdgeSlideData *sld = TRANS_DATA_CONTAINER_FIRST_OK(t)->custom.mode.data;
setCustomPoints(t, &t->mouse, sld->mval_end, sld->mval_start);
/* setCustomPoints isn't normally changing as the mouse moves,
* in this case apply mouse input immediately so we don't refresh
* with the value from the previous points */
applyMouseInput(t, &t->mouse, t->mval, t->values);
}
static BMEdge *get_other_edge(BMVert *v, BMEdge *e)
{
BMIter iter;
BMEdge *e_iter;
BM_ITER_ELEM (e_iter, &iter, v, BM_EDGES_OF_VERT) {
if (BM_elem_flag_test(e_iter, BM_ELEM_SELECT) && e_iter != e) {
return e_iter;
}
}
return NULL;
}
/* interpoaltes along a line made up of 2 segments (used for edge slide) */
static void interp_line_v3_v3v3v3(
float p[3], const float v1[3], const float v2[3], const float v3[3], float t)
{
float t_mid, t_delta;
/* could be pre-calculated */
t_mid = line_point_factor_v3(v2, v1, v3);
t_delta = t - t_mid;
if (t_delta < 0.0f) {
if (UNLIKELY(fabsf(t_mid) < FLT_EPSILON)) {
copy_v3_v3(p, v2);
}
else {
interp_v3_v3v3(p, v1, v2, t / t_mid);
}
}
else {
t = t - t_mid;
t_mid = 1.0f - t_mid;
if (UNLIKELY(fabsf(t_mid) < FLT_EPSILON)) {
copy_v3_v3(p, v3);
}
else {
interp_v3_v3v3(p, v2, v3, t / t_mid);
}
}
}
/**
* Find the closest point on the ngon on the opposite side.
* used to set the edge slide distance for ngons.
*/
static bool bm_loop_calc_opposite_co(BMLoop *l_tmp, const float plane_no[3], float r_co[3])
{
/* skip adjacent edges */
BMLoop *l_first = l_tmp->next;
BMLoop *l_last = l_tmp->prev;
BMLoop *l_iter;
float dist = FLT_MAX;
bool found = false;
l_iter = l_first;
do {
float tvec[3];
if (isect_line_plane_v3(tvec, l_iter->v->co, l_iter->next->v->co, l_tmp->v->co, plane_no)) {
const float fac = line_point_factor_v3(tvec, l_iter->v->co, l_iter->next->v->co);
/* allow some overlap to avoid missing the intersection because of float precision */
if ((fac > -FLT_EPSILON) && (fac < 1.0f + FLT_EPSILON)) {
/* likelihood of multiple intersections per ngon is quite low,
* it would have to loop back on its self, but better support it
* so check for the closest opposite edge */
const float tdist = len_v3v3(l_tmp->v->co, tvec);
if (tdist < dist) {
copy_v3_v3(r_co, tvec);
dist = tdist;
found = true;
}
}
}
} while ((l_iter = l_iter->next) != l_last);
return found;
}
/**
* Given 2 edges and a loop, step over the loops
* and calculate a direction to slide along.
*
* \param r_slide_vec: the direction to slide,
* the length of the vector defines the slide distance.
*/
static BMLoop *get_next_loop(
BMVert *v, BMLoop *l, BMEdge *e_prev, BMEdge *e_next, float r_slide_vec[3])
{
BMLoop *l_first;
float vec_accum[3] = {0.0f, 0.0f, 0.0f};
float vec_accum_len = 0.0f;
int i = 0;
BLI_assert(BM_edge_share_vert(e_prev, e_next) == v);
BLI_assert(BM_vert_in_edge(l->e, v));
l_first = l;
do {
l = BM_loop_other_edge_loop(l, v);
if (l->e == e_next) {
if (i) {
normalize_v3_length(vec_accum, vec_accum_len / (float)i);
}
else {
/* When there is no edge to slide along,
* we must slide along the vector defined by the face we're attach to */
BMLoop *l_tmp = BM_face_vert_share_loop(l_first->f, v);
BLI_assert(ELEM(l_tmp->e, e_prev, e_next) && ELEM(l_tmp->prev->e, e_prev, e_next));
if (l_tmp->f->len == 4) {
/* we could use code below, but in this case
* sliding diagonally across the quad works well */
sub_v3_v3v3(vec_accum, l_tmp->next->next->v->co, v->co);
}
else {
float tdir[3];
BM_loop_calc_face_direction(l_tmp, tdir);
cross_v3_v3v3(vec_accum, l_tmp->f->no, tdir);
#if 0
/* rough guess, we can do better! */
normalize_v3_length(vec_accum,
(BM_edge_calc_length(e_prev) + BM_edge_calc_length(e_next)) / 2.0f);
#else
/* be clever, check the opposite ngon edge to slide into.
* this gives best results */
{
float tvec[3];
float dist;
if (bm_loop_calc_opposite_co(l_tmp, tdir, tvec)) {
dist = len_v3v3(l_tmp->v->co, tvec);
}
else {
dist = (BM_edge_calc_length(e_prev) + BM_edge_calc_length(e_next)) / 2.0f;
}
normalize_v3_length(vec_accum, dist);
}
#endif
}
}
2013-01-29 01:02:45 +00:00
copy_v3_v3(r_slide_vec, vec_accum);
return l;
}
else {
/* accumulate the normalized edge vector,
* normalize so some edges don't skew the result */
float tvec[3];
sub_v3_v3v3(tvec, BM_edge_other_vert(l->e, v)->co, v->co);
vec_accum_len += normalize_v3(tvec);
add_v3_v3(vec_accum, tvec);
i += 1;
}
if (BM_loop_other_edge_loop(l, v)->e == e_next) {
if (i) {
normalize_v3_length(vec_accum, vec_accum_len / (float)i);
}
2013-01-29 01:02:45 +00:00
copy_v3_v3(r_slide_vec, vec_accum);
return BM_loop_other_edge_loop(l, v);
}
} while ((l != l->radial_next) && ((l = l->radial_next) != l_first));
if (i) {
normalize_v3_length(vec_accum, vec_accum_len / (float)i);
}
2018-05-13 06:44:03 +02:00
copy_v3_v3(r_slide_vec, vec_accum);
2018-05-13 06:44:03 +02:00
return NULL;
}
/**
* Calculate screenspace `mval_start` / `mval_end`, optionally slide direction.
*/
static void calcEdgeSlide_mval_range(TransInfo *t,
TransDataContainer *tc,
EdgeSlideData *sld,
const int *sv_table,
const int loop_nr,
const float mval[2],
const bool use_occlude_geometry,
const bool use_calc_direction)
{
TransDataEdgeSlideVert *sv_array = sld->sv;
BMEditMesh *em = BKE_editmesh_from_object(tc->obedit);
BMesh *bm = em->bm;
ARegion *ar = t->ar;
View3D *v3d = NULL;
RegionView3D *rv3d = NULL;
float projectMat[4][4];
BMBVHTree *bmbvh;
/* only for use_calc_direction */
float(*loop_dir)[3] = NULL, *loop_maxdist = NULL;
float mval_start[2], mval_end[2];
float mval_dir[3], dist_best_sq;
BMIter iter;
BMEdge *e;
if (t->spacetype == SPACE_VIEW3D) {
/* background mode support */
v3d = t->sa ? t->sa->spacedata.first : NULL;
rv3d = t->ar ? t->ar->regiondata : NULL;
}
if (!rv3d) {
/* ok, let's try to survive this */
unit_m4(projectMat);
}
else {
ED_view3d_ob_project_mat_get(rv3d, tc->obedit, projectMat);
}
if (use_occlude_geometry) {
bmbvh = BKE_bmbvh_new_from_editmesh(em, BMBVH_RESPECT_HIDDEN, NULL, false);
}
else {
bmbvh = NULL;
}
/* find mouse vectors, the global one, and one per loop in case we have
* multiple loops selected, in case they are oriented different */
zero_v3(mval_dir);
dist_best_sq = -1.0f;
if (use_calc_direction) {
loop_dir = MEM_callocN(sizeof(float[3]) * loop_nr, "sv loop_dir");
loop_maxdist = MEM_mallocN(sizeof(float) * loop_nr, "sv loop_maxdist");
copy_vn_fl(loop_maxdist, loop_nr, -1.0f);
}
BM_ITER_MESH (e, &iter, bm, BM_EDGES_OF_MESH) {
if (BM_elem_flag_test(e, BM_ELEM_SELECT)) {
int i;
/* search cross edges for visible edge to the mouse cursor,
* then use the shared vertex to calculate screen vector*/
for (i = 0; i < 2; i++) {
BMIter iter_other;
BMEdge *e_other;
BMVert *v = i ? e->v1 : e->v2;
BM_ITER_ELEM (e_other, &iter_other, v, BM_EDGES_OF_VERT) {
/* screen-space coords */
float sco_a[3], sco_b[3];
float dist_sq;
int j, l_nr;
2019-04-22 09:19:45 +10:00
if (BM_elem_flag_test(e_other, BM_ELEM_SELECT)) {
continue;
2019-04-22 09:19:45 +10:00
}
/* This test is only relevant if object is not wire-drawn! See [#32068]. */
if (use_occlude_geometry &&
!BMBVH_EdgeVisible(bmbvh, e_other, t->depsgraph, ar, v3d, tc->obedit)) {
continue;
}
BLI_assert(sv_table[BM_elem_index_get(v)] != -1);
j = sv_table[BM_elem_index_get(v)];
if (sv_array[j].v_side[1]) {
ED_view3d_project_float_v3_m4(ar, sv_array[j].v_side[1]->co, sco_b, projectMat);
}
else {
add_v3_v3v3(sco_b, v->co, sv_array[j].dir_side[1]);
ED_view3d_project_float_v3_m4(ar, sco_b, sco_b, projectMat);
}
if (sv_array[j].v_side[0]) {
ED_view3d_project_float_v3_m4(ar, sv_array[j].v_side[0]->co, sco_a, projectMat);
}
else {
add_v3_v3v3(sco_a, v->co, sv_array[j].dir_side[0]);
ED_view3d_project_float_v3_m4(ar, sco_a, sco_a, projectMat);
}
/* global direction */
dist_sq = dist_squared_to_line_segment_v2(mval, sco_b, sco_a);
if ((dist_best_sq == -1.0f) ||
/* intentionally use 2d size on 3d vector */
(dist_sq < dist_best_sq && (len_squared_v2v2(sco_b, sco_a) > 0.1f))) {
dist_best_sq = dist_sq;
sub_v3_v3v3(mval_dir, sco_b, sco_a);
}
if (use_calc_direction) {
/* per loop direction */
l_nr = sv_array[j].loop_nr;
if (loop_maxdist[l_nr] == -1.0f || dist_sq < loop_maxdist[l_nr]) {
loop_maxdist[l_nr] = dist_sq;
sub_v3_v3v3(loop_dir[l_nr], sco_b, sco_a);
}
}
}
}
}
}
if (use_calc_direction) {
int i;
sv_array = sld->sv;
for (i = 0; i < sld->totsv; i++, sv_array++) {
/* switch a/b if loop direction is different from global direction */
int l_nr = sv_array->loop_nr;
if (dot_v3v3(loop_dir[l_nr], mval_dir) < 0.0f) {
swap_v3_v3(sv_array->dir_side[0], sv_array->dir_side[1]);
SWAP(BMVert *, sv_array->v_side[0], sv_array->v_side[1]);
}
}
MEM_freeN(loop_dir);
MEM_freeN(loop_maxdist);
}
/* possible all of the edge loops are pointing directly at the view */
if (UNLIKELY(len_squared_v2(mval_dir) < 0.1f)) {
mval_dir[0] = 0.0f;
mval_dir[1] = 100.0f;
}
/* zero out start */
zero_v2(mval_start);
/* dir holds a vector along edge loop */
copy_v2_v2(mval_end, mval_dir);
mul_v2_fl(mval_end, 0.5f);
sld->mval_start[0] = t->mval[0] + mval_start[0];
sld->mval_start[1] = t->mval[1] + mval_start[1];
sld->mval_end[0] = t->mval[0] + mval_end[0];
sld->mval_end[1] = t->mval[1] + mval_end[1];
if (bmbvh) {
BKE_bmbvh_free(bmbvh);
}
}
static void calcEdgeSlide_even(TransInfo *t,
TransDataContainer *tc,
EdgeSlideData *sld,
const float mval[2])
{
TransDataEdgeSlideVert *sv = sld->sv;
if (sld->totsv > 0) {
ARegion *ar = t->ar;
RegionView3D *rv3d = NULL;
float projectMat[4][4];
int i = 0;
float v_proj[2];
float dist_sq = 0;
float dist_min_sq = FLT_MAX;
if (t->spacetype == SPACE_VIEW3D) {
/* background mode support */
rv3d = t->ar ? t->ar->regiondata : NULL;
}
if (!rv3d) {
/* ok, let's try to survive this */
unit_m4(projectMat);
}
else {
ED_view3d_ob_project_mat_get(rv3d, tc->obedit, projectMat);
}
for (i = 0; i < sld->totsv; i++, sv++) {
/* Set length */
sv->edge_len = len_v3v3(sv->dir_side[0], sv->dir_side[1]);
ED_view3d_project_float_v2_m4(ar, sv->v->co, v_proj, projectMat);
dist_sq = len_squared_v2v2(mval, v_proj);
if (dist_sq < dist_min_sq) {
dist_min_sq = dist_sq;
sld->curr_sv_index = i;
}
}
}
else {
sld->curr_sv_index = 0;
}
}
static bool createEdgeSlideVerts_double_side(TransInfo *t, TransDataContainer *tc)
{
BMEditMesh *em = BKE_editmesh_from_object(tc->obedit);
BMesh *bm = em->bm;
BMIter iter;
BMEdge *e;
BMVert *v;
TransDataEdgeSlideVert *sv_array;
int sv_tot;
int *sv_table; /* BMVert -> sv_array index */
EdgeSlideData *sld = MEM_callocN(sizeof(*sld), "sld");
float mval[2] = {(float)t->mval[0], (float)t->mval[1]};
int numsel, i, loop_nr;
bool use_occlude_geometry = false;
View3D *v3d = NULL;
RegionView3D *rv3d = NULL;
slide_origdata_init_flag(t, tc, &sld->orig_data);
sld->curr_sv_index = 0;
/*ensure valid selection*/
BM_ITER_MESH (v, &iter, bm, BM_VERTS_OF_MESH) {
if (BM_elem_flag_test(v, BM_ELEM_SELECT)) {
BMIter iter2;
numsel = 0;
BM_ITER_ELEM (e, &iter2, v, BM_EDGES_OF_VERT) {
if (BM_elem_flag_test(e, BM_ELEM_SELECT)) {
/* BMESH_TODO: this is probably very evil,
* set v->e to a selected edge*/
v->e = e;
numsel++;
}
}
if (numsel == 0 || numsel > 2) {
MEM_freeN(sld);
return false; /* invalid edge selection */
}
}
}
BM_ITER_MESH (e, &iter, bm, BM_EDGES_OF_MESH) {
if (BM_elem_flag_test(e, BM_ELEM_SELECT)) {
/* note, any edge with loops can work, but we won't get predictable results, so bail out */
if (!BM_edge_is_manifold(e) && !BM_edge_is_boundary(e)) {
/* can edges with at least once face user */
MEM_freeN(sld);
return false;
}
}
}
sv_table = MEM_mallocN(sizeof(*sv_table) * bm->totvert, __func__);
#define INDEX_UNSET -1
#define INDEX_INVALID -2
{
int j = 0;
BM_ITER_MESH_INDEX (v, &iter, bm, BM_VERTS_OF_MESH, i) {
if (BM_elem_flag_test(v, BM_ELEM_SELECT)) {
BM_elem_flag_enable(v, BM_ELEM_TAG);
sv_table[i] = INDEX_UNSET;
j += 1;
}
else {
BM_elem_flag_disable(v, BM_ELEM_TAG);
sv_table[i] = INDEX_INVALID;
}
BM_elem_index_set(v, i); /* set_inline */
}
bm->elem_index_dirty &= ~BM_VERT;
if (!j) {
MEM_freeN(sld);
MEM_freeN(sv_table);
return false;
}
sv_tot = j;
}
sv_array = MEM_callocN(sizeof(TransDataEdgeSlideVert) * sv_tot, "sv_array");
loop_nr = 0;
STACK_DECLARE(sv_array);
STACK_INIT(sv_array, sv_tot);
while (1) {
float vec_a[3], vec_b[3];
BMLoop *l_a, *l_b;
BMLoop *l_a_prev, *l_b_prev;
BMVert *v_first;
/* If this succeeds call get_next_loop()
* which calculates the direction to slide based on clever checks.
*
* otherwise we simply use 'e_dir' as an edge-rail.
* (which is better when the attached edge is a boundary, see: T40422)
*/
#define EDGESLIDE_VERT_IS_INNER(v, e_dir) \
((BM_edge_is_boundary(e_dir) == false) && (BM_vert_edge_count_nonwire(v) == 2))
v = NULL;
BM_ITER_MESH (v, &iter, bm, BM_VERTS_OF_MESH) {
2019-04-22 09:19:45 +10:00
if (BM_elem_flag_test(v, BM_ELEM_TAG)) {
break;
2019-04-22 09:19:45 +10:00
}
}
2019-04-22 09:19:45 +10:00
if (!v) {
break;
2019-04-22 09:19:45 +10:00
}
2019-04-22 09:19:45 +10:00
if (!v->e) {
continue;
2019-04-22 09:19:45 +10:00
}
v_first = v;
/*walk along the edge loop*/
e = v->e;
/*first, rewind*/
do {
e = get_other_edge(v, e);
if (!e) {
e = v->e;
break;
}
2019-04-22 09:19:45 +10:00
if (!BM_elem_flag_test(BM_edge_other_vert(e, v), BM_ELEM_TAG)) {
break;
2019-04-22 09:19:45 +10:00
}
v = BM_edge_other_vert(e, v);
} while (e != v_first->e);
BM_elem_flag_disable(v, BM_ELEM_TAG);
l_a = e->l;
l_b = e->l->radial_next;
/* regarding e_next, use get_next_loop()'s improved interpolation where possible */
{
BMEdge *e_next = get_other_edge(v, e);
if (e_next) {
get_next_loop(v, l_a, e, e_next, vec_a);
}
else {
BMLoop *l_tmp = BM_loop_other_edge_loop(l_a, v);
if (EDGESLIDE_VERT_IS_INNER(v, l_tmp->e)) {
get_next_loop(v, l_a, e, l_tmp->e, vec_a);
}
else {
sub_v3_v3v3(vec_a, BM_edge_other_vert(l_tmp->e, v)->co, v->co);
}
}
}
/* !BM_edge_is_boundary(e); */
if (l_b != l_a) {
BMEdge *e_next = get_other_edge(v, e);
if (e_next) {
get_next_loop(v, l_b, e, e_next, vec_b);
}
else {
BMLoop *l_tmp = BM_loop_other_edge_loop(l_b, v);
if (EDGESLIDE_VERT_IS_INNER(v, l_tmp->e)) {
get_next_loop(v, l_b, e, l_tmp->e, vec_b);
}
else {
sub_v3_v3v3(vec_b, BM_edge_other_vert(l_tmp->e, v)->co, v->co);
}
}
}
else {
l_b = NULL;
}
l_a_prev = NULL;
l_b_prev = NULL;
#define SV_FROM_VERT(v) \
((sv_table[BM_elem_index_get(v)] == INDEX_UNSET) ? \
((void)(sv_table[BM_elem_index_get(v)] = STACK_SIZE(sv_array)), \
STACK_PUSH_RET_PTR(sv_array)) : \
(&sv_array[sv_table[BM_elem_index_get(v)]]))
/*iterate over the loop*/
v_first = v;
do {
bool l_a_ok_prev;
bool l_b_ok_prev;
TransDataEdgeSlideVert *sv;
BMVert *v_prev;
BMEdge *e_prev;
/* XXX, 'sv' will initialize multiple times, this is suspicious. see [#34024] */
BLI_assert(v != NULL);
BLI_assert(sv_table[BM_elem_index_get(v)] != INDEX_INVALID);
sv = SV_FROM_VERT(v);
sv->v = v;
copy_v3_v3(sv->v_co_orig, v->co);
sv->loop_nr = loop_nr;
if (l_a || l_a_prev) {
BMLoop *l_tmp = BM_loop_other_edge_loop(l_a ? l_a : l_a_prev, v);
sv->v_side[0] = BM_edge_other_vert(l_tmp->e, v);
copy_v3_v3(sv->dir_side[0], vec_a);
}
if (l_b || l_b_prev) {
BMLoop *l_tmp = BM_loop_other_edge_loop(l_b ? l_b : l_b_prev, v);
sv->v_side[1] = BM_edge_other_vert(l_tmp->e, v);
copy_v3_v3(sv->dir_side[1], vec_b);
}
v_prev = v;
v = BM_edge_other_vert(e, v);
e_prev = e;
e = get_other_edge(v, e);
if (!e) {
BLI_assert(v != NULL);
BLI_assert(sv_table[BM_elem_index_get(v)] != INDEX_INVALID);
sv = SV_FROM_VERT(v);
sv->v = v;
copy_v3_v3(sv->v_co_orig, v->co);
sv->loop_nr = loop_nr;
if (l_a) {
BMLoop *l_tmp = BM_loop_other_edge_loop(l_a, v);
sv->v_side[0] = BM_edge_other_vert(l_tmp->e, v);
if (EDGESLIDE_VERT_IS_INNER(v, l_tmp->e)) {
get_next_loop(v, l_a, e_prev, l_tmp->e, sv->dir_side[0]);
}
else {
sub_v3_v3v3(sv->dir_side[0], sv->v_side[0]->co, v->co);
}
}
if (l_b) {
BMLoop *l_tmp = BM_loop_other_edge_loop(l_b, v);
sv->v_side[1] = BM_edge_other_vert(l_tmp->e, v);
if (EDGESLIDE_VERT_IS_INNER(v, l_tmp->e)) {
get_next_loop(v, l_b, e_prev, l_tmp->e, sv->dir_side[1]);
}
else {
sub_v3_v3v3(sv->dir_side[1], sv->v_side[1]->co, v->co);
}
}
BM_elem_flag_disable(v, BM_ELEM_TAG);
BM_elem_flag_disable(v_prev, BM_ELEM_TAG);
break;
}
l_a_ok_prev = (l_a != NULL);
l_b_ok_prev = (l_b != NULL);
l_a_prev = l_a;
l_b_prev = l_b;
if (l_a) {
l_a = get_next_loop(v, l_a, e_prev, e, vec_a);
}
else {
zero_v3(vec_a);
}
if (l_b) {
l_b = get_next_loop(v, l_b, e_prev, e, vec_b);
}
else {
zero_v3(vec_b);
}
if (l_a && l_b) {
/* pass */
}
else {
if (l_a || l_b) {
/* find the opposite loop if it was missing previously */
2019-04-22 09:19:45 +10:00
if (l_a == NULL && l_b && (l_b->radial_next != l_b)) {
l_a = l_b->radial_next;
2019-04-22 09:19:45 +10:00
}
else if (l_b == NULL && l_a && (l_a->radial_next != l_a)) {
l_b = l_a->radial_next;
2019-04-22 09:19:45 +10:00
}
}
else if (e->l != NULL) {
/* if there are non-contiguous faces, we can still recover
* the loops of the new edges faces */
/* note!, the behavior in this case means edges may move in opposite directions,
* this could be made to work more usefully. */
if (l_a_ok_prev) {
l_a = e->l;
l_b = (l_a->radial_next != l_a) ? l_a->radial_next : NULL;
}
else if (l_b_ok_prev) {
l_b = e->l;
l_a = (l_b->radial_next != l_b) ? l_b->radial_next : NULL;
}
}
if (!l_a_ok_prev && l_a) {
get_next_loop(v, l_a, e, e_prev, vec_a);
}
if (!l_b_ok_prev && l_b) {
get_next_loop(v, l_b, e, e_prev, vec_b);
}
}
BM_elem_flag_disable(v, BM_ELEM_TAG);
BM_elem_flag_disable(v_prev, BM_ELEM_TAG);
} while ((e != v_first->e) && (l_a || l_b));
#undef SV_FROM_VERT
#undef INDEX_UNSET
#undef INDEX_INVALID
loop_nr++;
#undef EDGESLIDE_VERT_IS_INNER
}
/* EDBM_flag_disable_all(em, BM_ELEM_SELECT); */
BLI_assert(STACK_SIZE(sv_array) == sv_tot);
sld->sv = sv_array;
sld->totsv = sv_tot;
/* use for visibility checks */
if (t->spacetype == SPACE_VIEW3D) {
v3d = t->sa ? t->sa->spacedata.first : NULL;
rv3d = t->ar ? t->ar->regiondata : NULL;
use_occlude_geometry = (v3d && TRANS_DATA_CONTAINER_FIRST_OK(t)->obedit->dt > OB_WIRE &&
!XRAY_ENABLED(v3d));
}
calcEdgeSlide_mval_range(t, tc, sld, sv_table, loop_nr, mval, use_occlude_geometry, true);
/* create copies of faces for customdata projection */
bmesh_edit_begin(bm, BMO_OPTYPE_FLAG_UNTAN_MULTIRES);
slide_origdata_init_data(tc, &sld->orig_data);
slide_origdata_create_data(
tc, &sld->orig_data, (TransDataGenericSlideVert *)sld->sv, sizeof(*sld->sv), sld->totsv);
if (rv3d) {
calcEdgeSlide_even(t, tc, sld, mval);
}
sld->em = em;
tc->custom.mode.data = sld;
MEM_freeN(sv_table);
return true;
}
/**
2015-07-31 22:59:02 +10:00
* A simple version of #createEdgeSlideVerts_double_side
* Which assumes the longest unselected.
*/
static bool createEdgeSlideVerts_single_side(TransInfo *t, TransDataContainer *tc)
{
BMEditMesh *em = BKE_editmesh_from_object(tc->obedit);
BMesh *bm = em->bm;
BMIter iter;
BMEdge *e;
TransDataEdgeSlideVert *sv_array;
int sv_tot;
int *sv_table; /* BMVert -> sv_array index */
EdgeSlideData *sld = MEM_callocN(sizeof(*sld), "sld");
float mval[2] = {(float)t->mval[0], (float)t->mval[1]};
int loop_nr;
bool use_occlude_geometry = false;
View3D *v3d = NULL;
RegionView3D *rv3d = NULL;
if (t->spacetype == SPACE_VIEW3D) {
/* background mode support */
v3d = t->sa ? t->sa->spacedata.first : NULL;
rv3d = t->ar ? t->ar->regiondata : NULL;
}
slide_origdata_init_flag(t, tc, &sld->orig_data);
sld->curr_sv_index = 0;
/* ensure valid selection */
{
int i = 0, j = 0;
BMVert *v;
BM_ITER_MESH_INDEX (v, &iter, bm, BM_VERTS_OF_MESH, i) {
if (BM_elem_flag_test(v, BM_ELEM_SELECT)) {
float len_sq_max = -1.0f;
BMIter iter2;
BM_ITER_ELEM (e, &iter2, v, BM_EDGES_OF_VERT) {
if (!BM_elem_flag_test(e, BM_ELEM_SELECT)) {
float len_sq = BM_edge_calc_length_squared(e);
if (len_sq > len_sq_max) {
len_sq_max = len_sq;
v->e = e;
}
}
}
if (len_sq_max != -1.0f) {
j++;
}
}
BM_elem_index_set(v, i); /* set_inline */
}
bm->elem_index_dirty &= ~BM_VERT;
if (!j) {
MEM_freeN(sld);
return false;
}
sv_tot = j;
}
BLI_assert(sv_tot != 0);
/* over alloc */
sv_array = MEM_callocN(sizeof(TransDataEdgeSlideVert) * bm->totvertsel, "sv_array");
/* same loop for all loops, weak but we dont connect loops in this case */
loop_nr = 1;
sv_table = MEM_mallocN(sizeof(*sv_table) * bm->totvert, __func__);
{
int i = 0, j = 0;
BMVert *v;
BM_ITER_MESH_INDEX (v, &iter, bm, BM_VERTS_OF_MESH, i) {
sv_table[i] = -1;
if ((v->e != NULL) && (BM_elem_flag_test(v, BM_ELEM_SELECT))) {
if (BM_elem_flag_test(v->e, BM_ELEM_SELECT) == 0) {
TransDataEdgeSlideVert *sv;
sv = &sv_array[j];
sv->v = v;
copy_v3_v3(sv->v_co_orig, v->co);
sv->v_side[0] = BM_edge_other_vert(v->e, v);
sub_v3_v3v3(sv->dir_side[0], sv->v_side[0]->co, v->co);
sv->loop_nr = 0;
sv_table[i] = j;
j += 1;
}
}
}
}
/* check for wire vertices,
* interpolate the directions of wire verts between non-wire verts */
if (sv_tot != bm->totvert) {
const int sv_tot_nowire = sv_tot;
TransDataEdgeSlideVert *sv_iter = sv_array;
for (int i = 0; i < sv_tot_nowire; i++, sv_iter++) {
BMIter eiter;
BM_ITER_ELEM (e, &eiter, sv_iter->v, BM_EDGES_OF_VERT) {
/* walk over wire */
TransDataEdgeSlideVert *sv_end = NULL;
BMEdge *e_step = e;
BMVert *v = sv_iter->v;
int j;
j = sv_tot;
while (1) {
BMVert *v_other = BM_edge_other_vert(e_step, v);
int endpoint = ((sv_table[BM_elem_index_get(v_other)] != -1) +
(BM_vert_is_edge_pair(v_other) == false));
if ((BM_elem_flag_test(e_step, BM_ELEM_SELECT) &&
BM_elem_flag_test(v_other, BM_ELEM_SELECT)) &&
(endpoint == 0)) {
/* scan down the list */
TransDataEdgeSlideVert *sv;
BLI_assert(sv_table[BM_elem_index_get(v_other)] == -1);
sv_table[BM_elem_index_get(v_other)] = j;
sv = &sv_array[j];
sv->v = v_other;
copy_v3_v3(sv->v_co_orig, v_other->co);
copy_v3_v3(sv->dir_side[0], sv_iter->dir_side[0]);
j++;
/* advance! */
v = v_other;
e_step = BM_DISK_EDGE_NEXT(e_step, v_other);
}
else {
if ((endpoint == 2) && (sv_tot != j)) {
BLI_assert(BM_elem_index_get(v_other) != -1);
sv_end = &sv_array[sv_table[BM_elem_index_get(v_other)]];
}
break;
}
}
if (sv_end) {
int sv_tot_prev = sv_tot;
const float *co_src = sv_iter->v->co;
const float *co_dst = sv_end->v->co;
const float *dir_src = sv_iter->dir_side[0];
const float *dir_dst = sv_end->dir_side[0];
sv_tot = j;
while (j-- != sv_tot_prev) {
float factor;
factor = line_point_factor_v3(sv_array[j].v->co, co_src, co_dst);
interp_v3_v3v3(sv_array[j].dir_side[0], dir_src, dir_dst, factor);
}
}
}
}
}
/* EDBM_flag_disable_all(em, BM_ELEM_SELECT); */
sld->sv = sv_array;
sld->totsv = sv_tot;
/* use for visibility checks */
if (t->spacetype == SPACE_VIEW3D) {
v3d = t->sa ? t->sa->spacedata.first : NULL;
rv3d = t->ar ? t->ar->regiondata : NULL;
use_occlude_geometry = (v3d && TRANS_DATA_CONTAINER_FIRST_OK(t)->obedit->dt > OB_WIRE &&
!XRAY_ENABLED(v3d));
}
calcEdgeSlide_mval_range(t, tc, sld, sv_table, loop_nr, mval, use_occlude_geometry, false);
/* create copies of faces for customdata projection */
bmesh_edit_begin(bm, BMO_OPTYPE_FLAG_UNTAN_MULTIRES);
slide_origdata_init_data(tc, &sld->orig_data);
slide_origdata_create_data(
tc, &sld->orig_data, (TransDataGenericSlideVert *)sld->sv, sizeof(*sld->sv), sld->totsv);
if (rv3d) {
calcEdgeSlide_even(t, tc, sld, mval);
}
sld->em = em;
tc->custom.mode.data = sld;
MEM_freeN(sv_table);
return true;
}
void projectEdgeSlideData(TransInfo *t, bool is_final)
{
FOREACH_TRANS_DATA_CONTAINER (t, tc) {
EdgeSlideData *sld = tc->custom.mode.data;
SlideOrigData *sod = &sld->orig_data;
if (sod->use_origfaces == false) {
return;
}
slide_origdata_interp_data(tc->obedit,
sod,
(TransDataGenericSlideVert *)sld->sv,
sizeof(*sld->sv),
sld->totsv,
is_final);
}
}
void freeEdgeSlideTempFaces(EdgeSlideData *sld)
2012-04-24 22:50:49 +00:00
{
slide_origdata_free_date(&sld->orig_data);
}
void freeEdgeSlideVerts(TransInfo *UNUSED(t),
TransDataContainer *UNUSED(tc),
TransCustomData *custom_data)
{
EdgeSlideData *sld = custom_data->data;
2018-05-13 06:44:03 +02:00
2019-04-22 09:19:45 +10:00
if (!sld) {
return;
2019-04-22 09:19:45 +10:00
}
freeEdgeSlideTempFaces(sld);
bmesh_edit_end(sld->em->bm, BMO_OPTYPE_FLAG_UNTAN_MULTIRES);
2018-05-13 06:44:03 +02:00
MEM_freeN(sld->sv);
MEM_freeN(sld);
2018-05-13 06:44:03 +02:00
custom_data->data = NULL;
}
static void initEdgeSlide_ex(
TransInfo *t, bool use_double_side, bool use_even, bool flipped, bool use_clamp)
{
EdgeSlideData *sld;
bool ok = false;
t->mode = TFM_EDGE_SLIDE;
t->transform = applyEdgeSlide;
t->handleEvent = handleEventEdgeSlide;
{
EdgeSlideParams *slp = MEM_callocN(sizeof(*slp), __func__);
slp->use_even = use_even;
slp->flipped = flipped;
/* happens to be best for single-sided */
if (use_double_side == false) {
slp->flipped = !flipped;
}
slp->perc = 0.0f;
if (!use_clamp) {
t->flag |= T_ALT_TRANSFORM;
}
t->custom.mode.data = slp;
t->custom.mode.use_free = true;
}
if (use_double_side) {
FOREACH_TRANS_DATA_CONTAINER (t, tc) {
ok |= createEdgeSlideVerts_double_side(t, tc);
}
}
else {
FOREACH_TRANS_DATA_CONTAINER (t, tc) {
ok |= createEdgeSlideVerts_single_side(t, tc);
}
}
if (!ok) {
t->state = TRANS_CANCEL;
return;
}
FOREACH_TRANS_DATA_CONTAINER (t, tc) {
sld = tc->custom.mode.data;
if (!sld) {
continue;
}
tc->custom.mode.free_cb = freeEdgeSlideVerts;
}
/* set custom point first if you want value to be initialized by init */
calcEdgeSlideCustomPoints(t);
initMouseInputMode(t, &t->mouse, INPUT_CUSTOM_RATIO_FLIP);
2018-05-13 06:44:03 +02:00
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = 0.1f;
t->snap[2] = t->snap[1] * 0.1f;
copy_v3_fl(t->num.val_inc, t->snap[1]);
t->num.unit_sys = t->scene->unit.system;
t->num.unit_type[0] = B_UNIT_NONE;
t->flag |= T_NO_CONSTRAINT | T_NO_PROJECT;
}
static void initEdgeSlide(TransInfo *t)
{
initEdgeSlide_ex(t, true, false, false, true);
}
static eRedrawFlag handleEventEdgeSlide(struct TransInfo *t, const struct wmEvent *event)
{
if (t->mode == TFM_EDGE_SLIDE) {
EdgeSlideParams *slp = t->custom.mode.data;
if (slp) {
switch (event->type) {
case EKEY:
if (event->val == KM_PRESS) {
slp->use_even = !slp->use_even;
calcEdgeSlideCustomPoints(t);
return TREDRAW_HARD;
}
break;
case FKEY:
if (event->val == KM_PRESS) {
slp->flipped = !slp->flipped;
calcEdgeSlideCustomPoints(t);
return TREDRAW_HARD;
}
break;
case CKEY:
/* use like a modifier key */
if (event->val == KM_PRESS) {
t->flag ^= T_ALT_TRANSFORM;
calcEdgeSlideCustomPoints(t);
return TREDRAW_HARD;
}
break;
case EVT_MODAL_MAP:
#if 0
switch (event->val) {
case TFM_MODAL_EDGESLIDE_DOWN:
sld->curr_sv_index = ((sld->curr_sv_index - 1) + sld->totsv) % sld->totsv;
return TREDRAW_HARD;
case TFM_MODAL_EDGESLIDE_UP:
sld->curr_sv_index = (sld->curr_sv_index + 1) % sld->totsv;
return TREDRAW_HARD;
}
#endif
break;
case MOUSEMOVE:
calcEdgeSlideCustomPoints(t);
break;
default:
break;
}
}
}
return TREDRAW_NOTHING;
}
2015-05-07 20:10:05 +10:00
static void drawEdgeSlide(TransInfo *t)
{
if ((t->mode == TFM_EDGE_SLIDE) && TRANS_DATA_CONTAINER_FIRST_OK(t)->custom.mode.data) {
const EdgeSlideParams *slp = t->custom.mode.data;
EdgeSlideData *sld = TRANS_DATA_CONTAINER_FIRST_OK(t)->custom.mode.data;
const bool is_clamp = !(t->flag & T_ALT_TRANSFORM);
/* Even mode */
if ((slp->use_even == true) || (is_clamp == false)) {
const float line_size = UI_GetThemeValuef(TH_OUTLINE_WIDTH) + 0.5f;
GPU_depth_test(false);
GPU_blend(true);
GPU_blend_set_func_separate(
GPU_SRC_ALPHA, GPU_ONE_MINUS_SRC_ALPHA, GPU_ONE, GPU_ONE_MINUS_SRC_ALPHA);
GPU_matrix_push();
GPU_matrix_mul(TRANS_DATA_CONTAINER_FIRST_OK(t)->obedit->obmat);
uint pos = GPU_vertformat_attr_add(
immVertexFormat(), "pos", GPU_COMP_F32, 3, GPU_FETCH_FLOAT);
immBindBuiltinProgram(GPU_SHADER_3D_UNIFORM_COLOR);
if (slp->use_even == true) {
float co_a[3], co_b[3], co_mark[3];
TransDataEdgeSlideVert *curr_sv = &sld->sv[sld->curr_sv_index];
const float fac = (slp->perc + 1.0f) / 2.0f;
const float ctrl_size = UI_GetThemeValuef(TH_FACEDOT_SIZE) + 1.5f;
const float guide_size = ctrl_size - 0.5f;
const int alpha_shade = -30;
add_v3_v3v3(co_a, curr_sv->v_co_orig, curr_sv->dir_side[0]);
add_v3_v3v3(co_b, curr_sv->v_co_orig, curr_sv->dir_side[1]);
GPU_line_width(line_size);
immUniformThemeColorShadeAlpha(TH_EDGE_SELECT, 80, alpha_shade);
immBeginAtMost(GPU_PRIM_LINES, 4);
if (curr_sv->v_side[0]) {
immVertex3fv(pos, curr_sv->v_side[0]->co);
immVertex3fv(pos, curr_sv->v_co_orig);
}
if (curr_sv->v_side[1]) {
immVertex3fv(pos, curr_sv->v_side[1]->co);
immVertex3fv(pos, curr_sv->v_co_orig);
}
immEnd();
immUniformThemeColorShadeAlpha(TH_SELECT, -30, alpha_shade);
GPU_point_size(ctrl_size);
immBegin(GPU_PRIM_POINTS, 1);
if (slp->flipped) {
2019-04-22 09:19:45 +10:00
if (curr_sv->v_side[1]) {
immVertex3fv(pos, curr_sv->v_side[1]->co);
2019-04-22 09:19:45 +10:00
}
}
else {
2019-04-22 09:19:45 +10:00
if (curr_sv->v_side[0]) {
immVertex3fv(pos, curr_sv->v_side[0]->co);
2019-04-22 09:19:45 +10:00
}
}
immEnd();
immUniformThemeColorShadeAlpha(TH_SELECT, 255, alpha_shade);
GPU_point_size(guide_size);
immBegin(GPU_PRIM_POINTS, 1);
interp_line_v3_v3v3v3(co_mark, co_b, curr_sv->v_co_orig, co_a, fac);
immVertex3fv(pos, co_mark);
immEnd();
}
else {
if (is_clamp == false) {
const int side_index = sld->curr_side_unclamp;
TransDataEdgeSlideVert *sv;
int i;
const int alpha_shade = -160;
GPU_line_width(line_size);
immUniformThemeColorShadeAlpha(TH_EDGE_SELECT, 80, alpha_shade);
immBegin(GPU_PRIM_LINES, sld->totsv * 2);
/* TODO(campbell): Loop over all verts */
sv = sld->sv;
for (i = 0; i < sld->totsv; i++, sv++) {
float a[3], b[3];
if (!is_zero_v3(sv->dir_side[side_index])) {
copy_v3_v3(a, sv->dir_side[side_index]);
}
else {
copy_v3_v3(a, sv->dir_side[!side_index]);
}
mul_v3_fl(a, 100.0f);
negate_v3_v3(b, a);
add_v3_v3(a, sv->v_co_orig);
add_v3_v3(b, sv->v_co_orig);
immVertex3fv(pos, a);
immVertex3fv(pos, b);
}
immEnd();
}
else {
BLI_assert(0);
}
}
immUnbindProgram();
GPU_matrix_pop();
GPU_blend(false);
GPU_depth_test(true);
}
}
}
static void doEdgeSlide(TransInfo *t, float perc)
{
EdgeSlideParams *slp = t->custom.mode.data;
EdgeSlideData *sld_active = TRANS_DATA_CONTAINER_FIRST_OK(t)->custom.mode.data;
slp->perc = perc;
if (slp->use_even == false) {
const bool is_clamp = !(t->flag & T_ALT_TRANSFORM);
if (is_clamp) {
const int side_index = (perc < 0.0f);
const float perc_final = fabsf(perc);
FOREACH_TRANS_DATA_CONTAINER (t, tc) {
EdgeSlideData *sld = tc->custom.mode.data;
TransDataEdgeSlideVert *sv = sld->sv;
for (int i = 0; i < sld->totsv; i++, sv++) {
madd_v3_v3v3fl(sv->v->co, sv->v_co_orig, sv->dir_side[side_index], perc_final);
}
sld->curr_side_unclamp = side_index;
}
}
else {
const float perc_init = fabsf(perc) *
((sld_active->curr_side_unclamp == (perc < 0.0f)) ? 1 : -1);
const int side_index = sld_active->curr_side_unclamp;
FOREACH_TRANS_DATA_CONTAINER (t, tc) {
EdgeSlideData *sld = tc->custom.mode.data;
TransDataEdgeSlideVert *sv = sld->sv;
for (int i = 0; i < sld->totsv; i++, sv++) {
float dir_flip[3];
float perc_final = perc_init;
if (!is_zero_v3(sv->dir_side[side_index])) {
copy_v3_v3(dir_flip, sv->dir_side[side_index]);
}
else {
copy_v3_v3(dir_flip, sv->dir_side[!side_index]);
perc_final *= -1;
}
madd_v3_v3v3fl(sv->v->co, sv->v_co_orig, dir_flip, perc_final);
}
}
}
}
else {
/**
2019-04-17 08:44:58 +02:00
* Implementation note, even mode ignores the starting positions and uses
* only the a/b verts, this could be changed/improved so the distance is
* still met but the verts are moved along their original path (which may not be straight),
* however how it works now is OK and matches 2.4x - Campbell
*
2019-04-17 08:44:58 +02:00
* \note `len_v3v3(curr_sv->dir_side[0], curr_sv->dir_side[1])`
* is the same as the distance between the original vert locations,
* same goes for the lines below.
*/
TransDataEdgeSlideVert *curr_sv = &sld_active->sv[sld_active->curr_sv_index];
const float curr_length_perc = curr_sv->edge_len *
(((slp->flipped ? perc : -perc) + 1.0f) / 2.0f);
float co_a[3];
float co_b[3];
FOREACH_TRANS_DATA_CONTAINER (t, tc) {
EdgeSlideData *sld = tc->custom.mode.data;
TransDataEdgeSlideVert *sv = sld->sv;
for (int i = 0; i < sld->totsv; i++, sv++) {
if (sv->edge_len > FLT_EPSILON) {
const float fac = min_ff(sv->edge_len, curr_length_perc) / sv->edge_len;
add_v3_v3v3(co_a, sv->v_co_orig, sv->dir_side[0]);
add_v3_v3v3(co_b, sv->v_co_orig, sv->dir_side[1]);
if (slp->flipped) {
interp_line_v3_v3v3v3(sv->v->co, co_b, sv->v_co_orig, co_a, fac);
}
else {
interp_line_v3_v3v3v3(sv->v->co, co_a, sv->v_co_orig, co_b, fac);
}
}
}
}
}
}
static void applyEdgeSlide(TransInfo *t, const int UNUSED(mval[2]))
{
char str[UI_MAX_DRAW_STR];
size_t ofs = 0;
float final;
EdgeSlideParams *slp = t->custom.mode.data;
bool flipped = slp->flipped;
bool use_even = slp->use_even;
const bool is_clamp = !(t->flag & T_ALT_TRANSFORM);
const bool is_constrained = !(is_clamp == false || hasNumInput(&t->num));
final = t->values[0];
snapGridIncrement(t, &final);
/* only do this so out of range values are not displayed */
if (is_constrained) {
CLAMP(final, -1.0f, 1.0f);
}
applyNumInput(&t->num, &final);
t->values[0] = final;
/* header string */
ofs += BLI_strncpy_rlen(str + ofs, IFACE_("Edge Slide: "), sizeof(str) - ofs);
if (hasNumInput(&t->num)) {
char c[NUM_STR_REP_LEN];
outputNumInput(&(t->num), c, &t->scene->unit);
ofs += BLI_strncpy_rlen(str + ofs, &c[0], sizeof(str) - ofs);
}
else {
ofs += BLI_snprintf(str + ofs, sizeof(str) - ofs, "%.4f ", final);
}
ofs += BLI_snprintf(
str + ofs, sizeof(str) - ofs, IFACE_("(E)ven: %s, "), WM_bool_as_string(use_even));
if (use_even) {
ofs += BLI_snprintf(
str + ofs, sizeof(str) - ofs, IFACE_("(F)lipped: %s, "), WM_bool_as_string(flipped));
}
ofs += BLI_snprintf(
str + ofs, sizeof(str) - ofs, IFACE_("Alt or (C)lamp: %s"), WM_bool_as_string(is_clamp));
/* done with header string */
/* do stuff here */
doEdgeSlide(t, final);
recalcData(t);
ED_area_status_text(t->sa, str);
}
/** \} */
/* -------------------------------------------------------------------- */
/* Transform (Vert Slide) */
/** \name Transform Vert Slide
* \{ */
static void calcVertSlideCustomPoints(struct TransInfo *t)
{
VertSlideParams *slp = t->custom.mode.data;
VertSlideData *sld = TRANS_DATA_CONTAINER_FIRST_OK(t)->custom.mode.data;
TransDataVertSlideVert *sv = &sld->sv[sld->curr_sv_index];
const float *co_orig_3d = sv->co_orig_3d;
const float *co_curr_3d = sv->co_link_orig_3d[sv->co_link_curr];
float co_curr_2d[2], co_orig_2d[2];
int mval_ofs[2], mval_start[2], mval_end[2];
ED_view3d_project_float_v2_m4(t->ar, co_orig_3d, co_orig_2d, sld->proj_mat);
ED_view3d_project_float_v2_m4(t->ar, co_curr_3d, co_curr_2d, sld->proj_mat);
ARRAY_SET_ITEMS(mval_ofs, t->mouse.imval[0] - co_orig_2d[0], t->mouse.imval[1] - co_orig_2d[1]);
ARRAY_SET_ITEMS(mval_start, co_orig_2d[0] + mval_ofs[0], co_orig_2d[1] + mval_ofs[1]);
ARRAY_SET_ITEMS(mval_end, co_curr_2d[0] + mval_ofs[0], co_curr_2d[1] + mval_ofs[1]);
if (slp->flipped && slp->use_even) {
setCustomPoints(t, &t->mouse, mval_start, mval_end);
}
else {
setCustomPoints(t, &t->mouse, mval_end, mval_start);
}
/* setCustomPoints isn't normally changing as the mouse moves,
* in this case apply mouse input immediately so we don't refresh
* with the value from the previous points */
applyMouseInput(t, &t->mouse, t->mval, t->values);
}
/**
* Run once when initializing vert slide to find the reference edge
*/
static void calcVertSlideMouseActiveVert(struct TransInfo *t, const int mval[2])
{
/* Active object may have no selected vertices. */
VertSlideData *sld = TRANS_DATA_CONTAINER_FIRST_OK(t)->custom.mode.data;
float mval_fl[2] = {UNPACK2(mval)};
TransDataVertSlideVert *sv;
/* set the vertex to use as a reference for the mouse direction 'curr_sv_index' */
float dist_sq = 0.0f;
float dist_min_sq = FLT_MAX;
int i;
for (i = 0, sv = sld->sv; i < sld->totsv; i++, sv++) {
float co_2d[2];
ED_view3d_project_float_v2_m4(t->ar, sv->co_orig_3d, co_2d, sld->proj_mat);
dist_sq = len_squared_v2v2(mval_fl, co_2d);
if (dist_sq < dist_min_sq) {
dist_min_sq = dist_sq;
sld->curr_sv_index = i;
}
}
}
/**
* Run while moving the mouse to slide along the edge matching the mouse direction
*/
static void calcVertSlideMouseActiveEdges(struct TransInfo *t, const int mval[2])
{
VertSlideData *sld = TRANS_DATA_CONTAINER_FIRST_OK(t)->custom.mode.data;
float imval_fl[2] = {UNPACK2(t->mouse.imval)};
float mval_fl[2] = {UNPACK2(mval)};
float dir[3];
TransDataVertSlideVert *sv;
int i;
/* note: we could save a matrix-multiply for each vertex
* by finding the closest edge in local-space.
* However this skews the outcome with non-uniform-scale. */
/* first get the direction of the original mouse position */
sub_v2_v2v2(dir, imval_fl, mval_fl);
ED_view3d_win_to_delta(t->ar, dir, dir, t->zfac);
normalize_v3(dir);
for (i = 0, sv = sld->sv; i < sld->totsv; i++, sv++) {
if (sv->co_link_tot > 1) {
float dir_dot_best = -FLT_MAX;
int co_link_curr_best = -1;
int j;
for (j = 0; j < sv->co_link_tot; j++) {
float tdir[3];
float dir_dot;
sub_v3_v3v3(tdir, sv->co_orig_3d, sv->co_link_orig_3d[j]);
mul_mat3_m4_v3(TRANS_DATA_CONTAINER_FIRST_OK(t)->obedit->obmat, tdir);
project_plane_v3_v3v3(tdir, tdir, t->viewinv[2]);
normalize_v3(tdir);
dir_dot = dot_v3v3(dir, tdir);
if (dir_dot > dir_dot_best) {
dir_dot_best = dir_dot;
co_link_curr_best = j;
}
}
if (co_link_curr_best != -1) {
sv->co_link_curr = co_link_curr_best;
}
}
}
}
static bool createVertSlideVerts(TransInfo *t, TransDataContainer *tc)
{
BMEditMesh *em = BKE_editmesh_from_object(tc->obedit);
BMesh *bm = em->bm;
BMIter iter;
BMIter eiter;
BMEdge *e;
BMVert *v;
TransDataVertSlideVert *sv_array;
VertSlideData *sld = MEM_callocN(sizeof(*sld), "sld");
int j;
slide_origdata_init_flag(t, tc, &sld->orig_data);
sld->curr_sv_index = 0;
j = 0;
BM_ITER_MESH (v, &iter, bm, BM_VERTS_OF_MESH) {
bool ok = false;
if (BM_elem_flag_test(v, BM_ELEM_SELECT) && v->e) {
BM_ITER_ELEM (e, &eiter, v, BM_EDGES_OF_VERT) {
if (!BM_elem_flag_test(e, BM_ELEM_HIDDEN)) {
ok = true;
break;
}
}
}
if (ok) {
BM_elem_flag_enable(v, BM_ELEM_TAG);
j += 1;
}
else {
BM_elem_flag_disable(v, BM_ELEM_TAG);
}
}
if (!j) {
MEM_freeN(sld);
return false;
}
sv_array = MEM_callocN(sizeof(TransDataVertSlideVert) * j, "sv_array");
j = 0;
BM_ITER_MESH (v, &iter, bm, BM_VERTS_OF_MESH) {
if (BM_elem_flag_test(v, BM_ELEM_TAG)) {
int k;
sv_array[j].v = v;
copy_v3_v3(sv_array[j].co_orig_3d, v->co);
k = 0;
BM_ITER_ELEM (e, &eiter, v, BM_EDGES_OF_VERT) {
if (!BM_elem_flag_test(e, BM_ELEM_HIDDEN)) {
k++;
}
}
sv_array[j].co_link_orig_3d = MEM_mallocN(sizeof(*sv_array[j].co_link_orig_3d) * k,
__func__);
sv_array[j].co_link_tot = k;
k = 0;
BM_ITER_ELEM (e, &eiter, v, BM_EDGES_OF_VERT) {
if (!BM_elem_flag_test(e, BM_ELEM_HIDDEN)) {
BMVert *v_other = BM_edge_other_vert(e, v);
copy_v3_v3(sv_array[j].co_link_orig_3d[k], v_other->co);
k++;
}
}
j++;
}
}
sld->sv = sv_array;
sld->totsv = j;
bmesh_edit_begin(bm, BMO_OPTYPE_FLAG_UNTAN_MULTIRES);
slide_origdata_init_data(tc, &sld->orig_data);
slide_origdata_create_data(
tc, &sld->orig_data, (TransDataGenericSlideVert *)sld->sv, sizeof(*sld->sv), sld->totsv);
sld->em = em;
tc->custom.mode.data = sld;
/* most likely will be set below */
unit_m4(sld->proj_mat);
if (t->spacetype == SPACE_VIEW3D) {
/* view vars */
RegionView3D *rv3d = NULL;
ARegion *ar = t->ar;
rv3d = ar ? ar->regiondata : NULL;
if (rv3d) {
ED_view3d_ob_project_mat_get(rv3d, tc->obedit, sld->proj_mat);
}
}
/* XXX, calc vert slide across all objects */
if (tc == t->data_container) {
calcVertSlideMouseActiveVert(t, t->mval);
calcVertSlideMouseActiveEdges(t, t->mval);
}
return true;
}
void projectVertSlideData(TransInfo *t, bool is_final)
{
FOREACH_TRANS_DATA_CONTAINER (t, tc) {
VertSlideData *sld = tc->custom.mode.data;
SlideOrigData *sod = &sld->orig_data;
if (sod->use_origfaces == true) {
slide_origdata_interp_data(tc->obedit,
sod,
(TransDataGenericSlideVert *)sld->sv,
sizeof(*sld->sv),
sld->totsv,
is_final);
}
}
}
void freeVertSlideTempFaces(VertSlideData *sld)
{
slide_origdata_free_date(&sld->orig_data);
}
void freeVertSlideVerts(TransInfo *UNUSED(t),
TransDataContainer *UNUSED(tc),
TransCustomData *custom_data)
{
VertSlideData *sld = custom_data->data;
2019-04-22 09:19:45 +10:00
if (!sld) {
return;
2019-04-22 09:19:45 +10:00
}
freeVertSlideTempFaces(sld);
bmesh_edit_end(sld->em->bm, BMO_OPTYPE_FLAG_UNTAN_MULTIRES);
if (sld->totsv > 0) {
TransDataVertSlideVert *sv = sld->sv;
int i = 0;
for (i = 0; i < sld->totsv; i++, sv++) {
MEM_freeN(sv->co_link_orig_3d);
}
}
MEM_freeN(sld->sv);
MEM_freeN(sld);
custom_data->data = NULL;
}
static void initVertSlide_ex(TransInfo *t, bool use_even, bool flipped, bool use_clamp)
{
t->mode = TFM_VERT_SLIDE;
t->transform = applyVertSlide;
t->handleEvent = handleEventVertSlide;
{
VertSlideParams *slp = MEM_callocN(sizeof(*slp), __func__);
slp->use_even = use_even;
slp->flipped = flipped;
slp->perc = 0.0f;
if (!use_clamp) {
t->flag |= T_ALT_TRANSFORM;
}
t->custom.mode.data = slp;
t->custom.mode.use_free = true;
}
bool ok = false;
FOREACH_TRANS_DATA_CONTAINER (t, tc) {
ok |= createVertSlideVerts(t, tc);
VertSlideData *sld = tc->custom.mode.data;
if (sld) {
tc->custom.mode.free_cb = freeVertSlideVerts;
}
}
if (ok == false) {
t->state = TRANS_CANCEL;
return;
}
/* set custom point first if you want value to be initialized by init */
calcVertSlideCustomPoints(t);
initMouseInputMode(t, &t->mouse, INPUT_CUSTOM_RATIO);
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = 0.1f;
t->snap[2] = t->snap[1] * 0.1f;
copy_v3_fl(t->num.val_inc, t->snap[1]);
t->num.unit_sys = t->scene->unit.system;
t->num.unit_type[0] = B_UNIT_NONE;
t->flag |= T_NO_CONSTRAINT | T_NO_PROJECT;
}
static void initVertSlide(TransInfo *t)
{
initVertSlide_ex(t, false, false, true);
}
static eRedrawFlag handleEventVertSlide(struct TransInfo *t, const struct wmEvent *event)
{
if (t->mode == TFM_VERT_SLIDE) {
VertSlideParams *slp = t->custom.mode.data;
if (slp) {
switch (event->type) {
case EKEY:
if (event->val == KM_PRESS) {
slp->use_even = !slp->use_even;
if (slp->flipped) {
calcVertSlideCustomPoints(t);
}
return TREDRAW_HARD;
}
break;
case FKEY:
if (event->val == KM_PRESS) {
slp->flipped = !slp->flipped;
calcVertSlideCustomPoints(t);
return TREDRAW_HARD;
}
break;
case CKEY:
/* use like a modifier key */
if (event->val == KM_PRESS) {
t->flag ^= T_ALT_TRANSFORM;
calcVertSlideCustomPoints(t);
return TREDRAW_HARD;
}
break;
#if 0
case EVT_MODAL_MAP:
switch (event->val) {
case TFM_MODAL_EDGESLIDE_DOWN:
sld->curr_sv_index = ((sld->curr_sv_index - 1) + sld->totsv) % sld->totsv;
break;
case TFM_MODAL_EDGESLIDE_UP:
sld->curr_sv_index = (sld->curr_sv_index + 1) % sld->totsv;
break;
}
break;
#endif
case MOUSEMOVE: {
/* don't recalculate the best edge */
const bool is_clamp = !(t->flag & T_ALT_TRANSFORM);
if (is_clamp) {
calcVertSlideMouseActiveEdges(t, event->mval);
}
calcVertSlideCustomPoints(t);
break;
}
default:
break;
}
}
}
return TREDRAW_NOTHING;
}
2015-05-07 20:10:05 +10:00
static void drawVertSlide(TransInfo *t)
{
if ((t->mode == TFM_VERT_SLIDE) && TRANS_DATA_CONTAINER_FIRST_OK(t)->custom.mode.data) {
const VertSlideParams *slp = t->custom.mode.data;
VertSlideData *sld = TRANS_DATA_CONTAINER_FIRST_OK(t)->custom.mode.data;
const bool is_clamp = !(t->flag & T_ALT_TRANSFORM);
/* Non-Prop mode */
{
TransDataVertSlideVert *curr_sv = &sld->sv[sld->curr_sv_index];
TransDataVertSlideVert *sv;
const float ctrl_size = UI_GetThemeValuef(TH_FACEDOT_SIZE) + 1.5f;
const float line_size = UI_GetThemeValuef(TH_OUTLINE_WIDTH) + 0.5f;
const int alpha_shade = -160;
int i;
GPU_depth_test(false);
GPU_blend(true);
GPU_blend_set_func_separate(
GPU_SRC_ALPHA, GPU_ONE_MINUS_SRC_ALPHA, GPU_ONE, GPU_ONE_MINUS_SRC_ALPHA);
GPU_matrix_push();
GPU_matrix_mul(TRANS_DATA_CONTAINER_FIRST_OK(t)->obedit->obmat);
GPU_line_width(line_size);
const uint shdr_pos = GPU_vertformat_attr_add(
immVertexFormat(), "pos", GPU_COMP_F32, 3, GPU_FETCH_FLOAT);
immBindBuiltinProgram(GPU_SHADER_3D_UNIFORM_COLOR);
immUniformThemeColorShadeAlpha(TH_EDGE_SELECT, 80, alpha_shade);
immBegin(GPU_PRIM_LINES, sld->totsv * 2);
if (is_clamp) {
sv = sld->sv;
for (i = 0; i < sld->totsv; i++, sv++) {
immVertex3fv(shdr_pos, sv->co_orig_3d);
immVertex3fv(shdr_pos, sv->co_link_orig_3d[sv->co_link_curr]);
}
}
else {
sv = sld->sv;
for (i = 0; i < sld->totsv; i++, sv++) {
float a[3], b[3];
sub_v3_v3v3(a, sv->co_link_orig_3d[sv->co_link_curr], sv->co_orig_3d);
mul_v3_fl(a, 100.0f);
negate_v3_v3(b, a);
add_v3_v3(a, sv->co_orig_3d);
add_v3_v3(b, sv->co_orig_3d);
immVertex3fv(shdr_pos, a);
immVertex3fv(shdr_pos, b);
}
}
immEnd();
GPU_point_size(ctrl_size);
immBegin(GPU_PRIM_POINTS, 1);
immVertex3fv(shdr_pos,
(slp->flipped && slp->use_even) ?
curr_sv->co_link_orig_3d[curr_sv->co_link_curr] :
curr_sv->co_orig_3d);
immEnd();
immUnbindProgram();
/* direction from active vertex! */
if ((t->mval[0] != t->mouse.imval[0]) || (t->mval[1] != t->mouse.imval[1])) {
float zfac;
float mval_ofs[2];
float co_orig_3d[3];
float co_dest_3d[3];
mval_ofs[0] = t->mval[0] - t->mouse.imval[0];
mval_ofs[1] = t->mval[1] - t->mouse.imval[1];
mul_v3_m4v3(
co_orig_3d, TRANS_DATA_CONTAINER_FIRST_OK(t)->obedit->obmat, curr_sv->co_orig_3d);
zfac = ED_view3d_calc_zfac(t->ar->regiondata, co_orig_3d, NULL);
ED_view3d_win_to_delta(t->ar, mval_ofs, co_dest_3d, zfac);
invert_m4_m4(TRANS_DATA_CONTAINER_FIRST_OK(t)->obedit->imat,
TRANS_DATA_CONTAINER_FIRST_OK(t)->obedit->obmat);
mul_mat3_m4_v3(TRANS_DATA_CONTAINER_FIRST_OK(t)->obedit->imat, co_dest_3d);
add_v3_v3(co_dest_3d, curr_sv->co_orig_3d);
GPU_line_width(1.0f);
immBindBuiltinProgram(GPU_SHADER_3D_LINE_DASHED_UNIFORM_COLOR);
float viewport_size[4];
GPU_viewport_size_get_f(viewport_size);
immUniform2f("viewport_size", viewport_size[2], viewport_size[3]);
immUniform1i("colors_len", 0); /* "simple" mode */
immUniformColor4f(1.0f, 1.0f, 1.0f, 1.0f);
immUniform1f("dash_width", 6.0f);
immUniform1f("dash_factor", 0.5f);
immBegin(GPU_PRIM_LINES, 2);
immVertex3fv(shdr_pos, curr_sv->co_orig_3d);
immVertex3fv(shdr_pos, co_dest_3d);
immEnd();
immUnbindProgram();
}
GPU_matrix_pop();
GPU_depth_test(true);
}
}
}
static void doVertSlide(TransInfo *t, float perc)
{
VertSlideParams *slp = t->custom.mode.data;
slp->perc = perc;
FOREACH_TRANS_DATA_CONTAINER (t, tc) {
VertSlideData *sld = tc->custom.mode.data;
TransDataVertSlideVert *svlist = sld->sv, *sv;
int i;
sv = svlist;
if (slp->use_even == false) {
for (i = 0; i < sld->totsv; i++, sv++) {
interp_v3_v3v3(sv->v->co, sv->co_orig_3d, sv->co_link_orig_3d[sv->co_link_curr], perc);
}
}
else {
TransDataVertSlideVert *sv_curr = &sld->sv[sld->curr_sv_index];
const float edge_len_curr = len_v3v3(sv_curr->co_orig_3d,
sv_curr->co_link_orig_3d[sv_curr->co_link_curr]);
const float tperc = perc * edge_len_curr;
for (i = 0; i < sld->totsv; i++, sv++) {
float edge_len;
float dir[3];
sub_v3_v3v3(dir, sv->co_link_orig_3d[sv->co_link_curr], sv->co_orig_3d);
edge_len = normalize_v3(dir);
if (edge_len > FLT_EPSILON) {
if (slp->flipped) {
madd_v3_v3v3fl(sv->v->co, sv->co_link_orig_3d[sv->co_link_curr], dir, -tperc);
}
else {
madd_v3_v3v3fl(sv->v->co, sv->co_orig_3d, dir, tperc);
}
}
else {
copy_v3_v3(sv->v->co, sv->co_orig_3d);
}
}
}
}
}
static void applyVertSlide(TransInfo *t, const int UNUSED(mval[2]))
{
char str[UI_MAX_DRAW_STR];
size_t ofs = 0;
float final;
VertSlideParams *slp = t->custom.mode.data;
const bool flipped = slp->flipped;
const bool use_even = slp->use_even;
const bool is_clamp = !(t->flag & T_ALT_TRANSFORM);
const bool is_constrained = !(is_clamp == false || hasNumInput(&t->num));
final = t->values[0];
snapGridIncrement(t, &final);
/* only do this so out of range values are not displayed */
if (is_constrained) {
CLAMP(final, 0.0f, 1.0f);
}
applyNumInput(&t->num, &final);
t->values[0] = final;
/* header string */
ofs += BLI_strncpy_rlen(str + ofs, IFACE_("Vert Slide: "), sizeof(str) - ofs);
if (hasNumInput(&t->num)) {
char c[NUM_STR_REP_LEN];
outputNumInput(&(t->num), c, &t->scene->unit);
ofs += BLI_strncpy_rlen(str + ofs, &c[0], sizeof(str) - ofs);
}
else {
ofs += BLI_snprintf(str + ofs, sizeof(str) - ofs, "%.4f ", final);
}
ofs += BLI_snprintf(
str + ofs, sizeof(str) - ofs, IFACE_("(E)ven: %s, "), WM_bool_as_string(use_even));
if (use_even) {
ofs += BLI_snprintf(
str + ofs, sizeof(str) - ofs, IFACE_("(F)lipped: %s, "), WM_bool_as_string(flipped));
}
ofs += BLI_snprintf(
str + ofs, sizeof(str) - ofs, IFACE_("Alt or (C)lamp: %s"), WM_bool_as_string(is_clamp));
/* done with header string */
/* do stuff here */
doVertSlide(t, final);
recalcData(t);
ED_area_status_text(t->sa, str);
}
/** \} */
/* -------------------------------------------------------------------- */
/* Transform (EditBone Roll) */
/** \name Transform EditBone Roll
* \{ */
static void initBoneRoll(TransInfo *t)
{
t->mode = TFM_BONE_ROLL;
t->transform = applyBoneRoll;
initMouseInputMode(t, &t->mouse, INPUT_ANGLE);
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = DEG2RAD(5.0);
t->snap[2] = DEG2RAD(1.0);
copy_v3_fl(t->num.val_inc, t->snap[1]);
t->num.unit_sys = t->scene->unit.system;
t->num.unit_use_radians = (t->scene->unit.system_rotation == USER_UNIT_ROT_RADIANS);
t->num.unit_type[0] = B_UNIT_ROTATION;
t->flag |= T_NO_CONSTRAINT | T_NO_PROJECT;
}
static void applyBoneRoll(TransInfo *t, const int UNUSED(mval[2]))
{
int i;
char str[UI_MAX_DRAW_STR];
float final;
final = t->values[0];
snapGridIncrement(t, &final);
applyNumInput(&t->num, &final);
t->values[0] = final;
if (hasNumInput(&t->num)) {
char c[NUM_STR_REP_LEN];
outputNumInput(&(t->num), c, &t->scene->unit);
BLI_snprintf(str, sizeof(str), IFACE_("Roll: %s"), &c[0]);
}
else {
BLI_snprintf(str, sizeof(str), IFACE_("Roll: %.2f"), RAD2DEGF(final));
}
/* set roll values */
FOREACH_TRANS_DATA_CONTAINER (t, tc) {
TransData *td = tc->data;
for (i = 0; i < tc->data_len; i++, td++) {
2019-04-22 09:19:45 +10:00
if (td->flag & TD_NOACTION) {
break;
2019-04-22 09:19:45 +10:00
}
2019-04-22 09:19:45 +10:00
if (td->flag & TD_SKIP) {
continue;
2019-04-22 09:19:45 +10:00
}
*(td->val) = td->ival - final;
}
}
recalcData(t);
ED_area_status_text(t->sa, str);
}
/** \} */
/* -------------------------------------------------------------------- */
/* Transform (Bake-Time) */
/** \name Transform Bake-Time
* \{ */
static void initBakeTime(TransInfo *t)
{
t->transform = applyBakeTime;
initMouseInputMode(t, &t->mouse, INPUT_NONE);
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = 1.0f;
t->snap[2] = t->snap[1] * 0.1f;
copy_v3_fl(t->num.val_inc, t->snap[1]);
t->num.unit_sys = t->scene->unit.system;
t->num.unit_type[0] = B_UNIT_NONE; /* Don't think this uses units? */
}
static void applyBakeTime(TransInfo *t, const int mval[2])
{
float time;
int i;
char str[UI_MAX_DRAW_STR];
float fac = 0.1f;
/* XXX, disable precision for now,
* this isn't even accessible by the user */
#if 0
if (t->mouse.precision) {
/* calculate ratio for shiftkey pos, and for total, and blend these for precision */
time = (float)(t->center2d[0] - t->mouse.precision_mval[0]) * fac;
time += 0.1f * ((float)(t->center2d[0] * fac - mval[0]) - time);
}
else
#endif
{
time = (float)(t->center2d[0] - mval[0]) * fac;
}
snapGridIncrement(t, &time);
applyNumInput(&t->num, &time);
/* header print for NumInput */
if (hasNumInput(&t->num)) {
char c[NUM_STR_REP_LEN];
outputNumInput(&(t->num), c, &t->scene->unit);
2019-04-22 09:19:45 +10:00
if (time >= 0.0f) {
BLI_snprintf(str, sizeof(str), IFACE_("Time: +%s %s"), c, t->proptext);
2019-04-22 09:19:45 +10:00
}
else {
BLI_snprintf(str, sizeof(str), IFACE_("Time: %s %s"), c, t->proptext);
2019-04-22 09:19:45 +10:00
}
}
else {
/* default header print */
2019-04-22 09:19:45 +10:00
if (time >= 0.0f) {
BLI_snprintf(str, sizeof(str), IFACE_("Time: +%.3f %s"), time, t->proptext);
2019-04-22 09:19:45 +10:00
}
else {
BLI_snprintf(str, sizeof(str), IFACE_("Time: %.3f %s"), time, t->proptext);
2019-04-22 09:19:45 +10:00
}
}
FOREACH_TRANS_DATA_CONTAINER (t, tc) {
TransData *td = tc->data;
for (i = 0; i < tc->data_len; i++, td++) {
2019-04-22 09:19:45 +10:00
if (td->flag & TD_NOACTION) {
break;
2019-04-22 09:19:45 +10:00
}
2019-04-22 09:19:45 +10:00
if (td->flag & TD_SKIP) {
continue;
2019-04-22 09:19:45 +10:00
}
if (td->val) {
*td->val = td->ival + time * td->factor;
2019-04-22 09:19:45 +10:00
if (td->ext->size && *td->val < *td->ext->size) {
*td->val = *td->ext->size;
2019-04-22 09:19:45 +10:00
}
if (td->ext->quat && *td->val > *td->ext->quat) {
*td->val = *td->ext->quat;
2019-04-22 09:19:45 +10:00
}
}
}
}
recalcData(t);
ED_area_status_text(t->sa, str);
}
/** \} */
/* -------------------------------------------------------------------- */
/* Transform (Mirror) */
/** \name Transform Mirror
* \{ */
static void initMirror(TransInfo *t)
{
t->transform = applyMirror;
initMouseInputMode(t, &t->mouse, INPUT_NONE);
t->flag |= T_NULL_ONE;
if ((t->flag & T_EDIT) == 0) {
t->flag |= T_NO_ZERO;
}
}
static void applyMirror(TransInfo *t, const int UNUSED(mval[2]))
{
float size[3], mat[3][3];
int i;
char str[UI_MAX_DRAW_STR];
/*
* OPTIMIZATION:
* This still recalcs transformation on mouse move
* while it should only recalc on constraint change
* */
/* if an axis has been selected */
if (t->con.mode & CON_APPLY) {
size[0] = size[1] = size[2] = -1;
size_to_mat3(mat, size);
if (t->con.applySize) {
t->con.applySize(t, NULL, NULL, mat);
}
BLI_snprintf(str, sizeof(str), IFACE_("Mirror%s"), t->con.text);
FOREACH_TRANS_DATA_CONTAINER (t, tc) {
TransData *td = tc->data;
for (i = 0; i < tc->data_len; i++, td++) {
2019-04-22 09:19:45 +10:00
if (td->flag & TD_NOACTION) {
break;
2019-04-22 09:19:45 +10:00
}
2019-04-22 09:19:45 +10:00
if (td->flag & TD_SKIP) {
continue;
2019-04-22 09:19:45 +10:00
}
ElementResize(t, tc, td, mat);
}
}
recalcData(t);
ED_area_status_text(t->sa, str);
}
else {
size[0] = size[1] = size[2] = 1;
size_to_mat3(mat, size);
FOREACH_TRANS_DATA_CONTAINER (t, tc) {
TransData *td = tc->data;
for (i = 0; i < tc->data_len; i++, td++) {
2019-04-22 09:19:45 +10:00
if (td->flag & TD_NOACTION) {
break;
2019-04-22 09:19:45 +10:00
}
2019-04-22 09:19:45 +10:00
if (td->flag & TD_SKIP) {
continue;
2019-04-22 09:19:45 +10:00
}
ElementResize(t, tc, td, mat);
}
}
recalcData(t);
2019-04-22 09:19:45 +10:00
if (t->flag & T_2D_EDIT) {
ED_area_status_text(t->sa, IFACE_("Select a mirror axis (X, Y)"));
2019-04-22 09:19:45 +10:00
}
else {
ED_area_status_text(t->sa, IFACE_("Select a mirror axis (X, Y, Z)"));
2019-04-22 09:19:45 +10:00
}
}
}
/** \} */
/* -------------------------------------------------------------------- */
/* Transform (Align) */
/** \name Transform Align
* \{ */
static void initAlign(TransInfo *t)
{
t->flag |= T_NO_CONSTRAINT;
t->transform = applyAlign;
initMouseInputMode(t, &t->mouse, INPUT_NONE);
}
static void applyAlign(TransInfo *t, const int UNUSED(mval[2]))
{
float center[3];
int i;
FOREACH_TRANS_DATA_CONTAINER (t, tc) {
/* saving original center */
copy_v3_v3(center, tc->center_local);
TransData *td = tc->data;
for (i = 0; i < tc->data_len; i++, td++) {
float mat[3][3], invmat[3][3];
2019-04-22 09:19:45 +10:00
if (td->flag & TD_NOACTION) {
break;
2019-04-22 09:19:45 +10:00
}
2019-04-22 09:19:45 +10:00
if (td->flag & TD_SKIP) {
continue;
2019-04-22 09:19:45 +10:00
}
/* around local centers */
if (t->flag & (T_OBJECT | T_POSE)) {
copy_v3_v3(tc->center_local, td->center);
}
else {
if (t->settings->selectmode & SCE_SELECT_FACE) {
copy_v3_v3(tc->center_local, td->center);
}
}
invert_m3_m3(invmat, td->axismtx);
mul_m3_m3m3(mat, t->spacemtx, invmat);
ElementRotation(t, tc, td, mat, t->around);
}
/* restoring original center */
copy_v3_v3(tc->center_local, center);
}
recalcData(t);
ED_area_status_text(t->sa, IFACE_("Align"));
}
/** \} */
/* -------------------------------------------------------------------- */
/* Transform (Sequencer Slide) */
/** \name Transform Sequencer Slide
* \{ */
static void initSeqSlide(TransInfo *t)
{
t->transform = applySeqSlide;
initMouseInputMode(t, &t->mouse, INPUT_VECTOR);
t->idx_max = 1;
t->num.flag = 0;
t->num.idx_max = t->idx_max;
t->snap[0] = 0.0f;
t->snap[1] = floorf(t->scene->r.frs_sec / t->scene->r.frs_sec_base);
t->snap[2] = 10.0f;
copy_v3_fl(t->num.val_inc, t->snap[1]);
t->num.unit_sys = t->scene->unit.system;
/* Would be nice to have a time handling in units as well
* (supporting frames in addition to "natural" time...). */
t->num.unit_type[0] = B_UNIT_NONE;
t->num.unit_type[1] = B_UNIT_NONE;
}
static void headerSeqSlide(TransInfo *t, const float val[2], char str[UI_MAX_DRAW_STR])
{
char tvec[NUM_STR_REP_LEN * 3];
size_t ofs = 0;
if (hasNumInput(&t->num)) {
outputNumInput(&(t->num), tvec, &t->scene->unit);
}
else {
BLI_snprintf(&tvec[0], NUM_STR_REP_LEN, "%.0f, %.0f", val[0], val[1]);
}
ofs += BLI_snprintf(
str + ofs, UI_MAX_DRAW_STR - ofs, IFACE_("Sequence Slide: %s%s, ("), &tvec[0], t->con.text);
if (t->keymap) {
wmKeyMapItem *kmi = WM_modalkeymap_find_propvalue(t->keymap, TFM_MODAL_TRANSLATE);
if (kmi) {
ofs += WM_keymap_item_to_string(kmi, false, str + ofs, UI_MAX_DRAW_STR - ofs);
}
}
ofs += BLI_snprintf(str + ofs,
UI_MAX_DRAW_STR - ofs,
IFACE_(" or Alt) Expand to fit %s"),
WM_bool_as_string((t->flag & T_ALT_TRANSFORM) != 0));
}
static void applySeqSlideValue(TransInfo *t, const float val[2])
{
int i;
FOREACH_TRANS_DATA_CONTAINER (t, tc) {
TransData *td = tc->data;
for (i = 0; i < tc->data_len; i++, td++) {
2019-04-22 09:19:45 +10:00
if (td->flag & TD_NOACTION) {
break;
2019-04-22 09:19:45 +10:00
}
2019-04-22 09:19:45 +10:00
if (td->flag & TD_SKIP) {
continue;
2019-04-22 09:19:45 +10:00
}
madd_v2_v2v2fl(td->loc, td->iloc, val, td->factor);
}
}
}
static void applySeqSlide(TransInfo *t, const int mval[2])
{
char str[UI_MAX_DRAW_STR];
snapSequenceBounds(t, mval);
if (t->con.mode & CON_APPLY) {
float pvec[3] = {0.0f, 0.0f, 0.0f};
float tvec[3];
t->con.applyVec(t, NULL, NULL, t->values, tvec, pvec);
copy_v3_v3(t->values, tvec);
}
else {
// snapGridIncrement(t, t->values);
applyNumInput(&t->num, t->values);
}
t->values[0] = floorf(t->values[0] + 0.5f);
t->values[1] = floorf(t->values[1] + 0.5f);
headerSeqSlide(t, t->values, str);
applySeqSlideValue(t, t->values);
recalcData(t);
ED_area_status_text(t->sa, str);
}
/** \} */
/* -------------------------------------------------------------------- */
/* Animation Editors - Transform Utils
*
* Special Helpers for Various Settings
*/
/** \name Animation Editor Utils
* \{ */
/* This function returns the snapping 'mode' for Animation Editors only
* We cannot use the standard snapping due to NLA-strip scaling complexities.
*/
// XXX these modifier checks should be keymappable
static short getAnimEdit_SnapMode(TransInfo *t)
{
short autosnap = SACTSNAP_OFF;
2018-05-13 06:44:03 +02:00
if (t->spacetype == SPACE_ACTION) {
SpaceAction *saction = (SpaceAction *)t->sa->spacedata.first;
2018-05-13 06:44:03 +02:00
2019-04-22 09:19:45 +10:00
if (saction) {
autosnap = saction->autosnap;
2019-04-22 09:19:45 +10:00
}
}
else if (t->spacetype == SPACE_GRAPH) {
SpaceGraph *sipo = (SpaceGraph *)t->sa->spacedata.first;
2018-05-13 06:44:03 +02:00
2019-04-22 09:19:45 +10:00
if (sipo) {
autosnap = sipo->autosnap;
2019-04-22 09:19:45 +10:00
}
}
else if (t->spacetype == SPACE_NLA) {
SpaceNla *snla = (SpaceNla *)t->sa->spacedata.first;
2018-05-13 06:44:03 +02:00
2019-04-22 09:19:45 +10:00
if (snla) {
autosnap = snla->autosnap;
2019-04-22 09:19:45 +10:00
}
}
else {
autosnap = SACTSNAP_OFF;
}
2018-05-13 06:44:03 +02:00
/* toggle autosnap on/off
* - when toggling on, prefer nearest frame over 1.0 frame increments
*/
if (t->modifiers & MOD_SNAP_INVERT) {
2019-04-22 09:19:45 +10:00
if (autosnap) {
autosnap = SACTSNAP_OFF;
2019-04-22 09:19:45 +10:00
}
else {
autosnap = SACTSNAP_FRAME;
2019-04-22 09:19:45 +10:00
}
}
return autosnap;
}
/* This function is used by Animation Editor specific transform functions to do
* the Snap Keyframe to Nearest Frame/Marker
*/
static void doAnimEdit_SnapFrame(
TransInfo *t, TransData *td, TransData2D *td2d, AnimData *adt, short autosnap)
{
/* snap key to nearest frame or second? */
if (ELEM(autosnap, SACTSNAP_FRAME, SACTSNAP_SECOND)) {
const Scene *scene = t->scene;
const double secf = FPS;
double val;
/* convert frame to nla-action time (if needed) */
2019-04-22 09:19:45 +10:00
if (adt) {
val = BKE_nla_tweakedit_remap(adt, *(td->val), NLATIME_CONVERT_MAP);
2019-04-22 09:19:45 +10:00
}
else {
val = *(td->val);
2019-04-22 09:19:45 +10:00
}
/* do the snapping to nearest frame/second */
if (autosnap == SACTSNAP_FRAME) {
val = floorf(val + 0.5);
}
else if (autosnap == SACTSNAP_SECOND) {
val = (float)(floor((val / secf) + 0.5) * secf);
}
/* convert frame out of nla-action time */
2019-04-22 09:19:45 +10:00
if (adt) {
*(td->val) = BKE_nla_tweakedit_remap(adt, val, NLATIME_CONVERT_UNMAP);
2019-04-22 09:19:45 +10:00
}
else {
*(td->val) = val;
2019-04-22 09:19:45 +10:00
}
}
/* snap key to nearest marker? */
else if (autosnap == SACTSNAP_MARKER) {
float val;
/* convert frame to nla-action time (if needed) */
2019-04-22 09:19:45 +10:00
if (adt) {
val = BKE_nla_tweakedit_remap(adt, *(td->val), NLATIME_CONVERT_MAP);
2019-04-22 09:19:45 +10:00
}
else {
val = *(td->val);
2019-04-22 09:19:45 +10:00
}
/* snap to nearest marker */
// TODO: need some more careful checks for where data comes from
val = (float)ED_markers_find_nearest_marker_time(&t->scene->markers, val);
/* convert frame out of nla-action time */
2019-04-22 09:19:45 +10:00
if (adt) {
*(td->val) = BKE_nla_tweakedit_remap(adt, val, NLATIME_CONVERT_UNMAP);
2019-04-22 09:19:45 +10:00
}
else {
*(td->val) = val;
2019-04-22 09:19:45 +10:00
}
}
2019-04-17 08:44:58 +02:00
/* If the handles are to be moved too
* (as side-effect of keyframes moving, to keep the general effect)
* offset them by the same amount so that the general angles are maintained
* (i.e. won't change while handles are free-to-roam and keyframes are snap-locked).
*/
if ((td->flag & TD_MOVEHANDLE1) && td2d->h1) {
td2d->h1[0] = td2d->ih1[0] + *td->val - td->ival;
}
if ((td->flag & TD_MOVEHANDLE2) && td2d->h2) {
td2d->h2[0] = td2d->ih2[0] + *td->val - td->ival;
}
}
/** \} */
/* -------------------------------------------------------------------- */
/* Transform (Animation Translation) */
/** \name Transform Animation Translation
* \{ */
static void initTimeTranslate(TransInfo *t)
{
/* this tool is only really available in the Action Editor... */
if (!ELEM(t->spacetype, SPACE_ACTION, SPACE_SEQ)) {
t->state = TRANS_CANCEL;
}
t->mode = TFM_TIME_TRANSLATE;
t->transform = applyTimeTranslate;
initMouseInputMode(t, &t->mouse, INPUT_NONE);
/* num-input has max of (n-1) */
t->idx_max = 0;
t->num.flag = 0;
t->num.idx_max = t->idx_max;
/* initialize snap like for everything else */
t->snap[0] = 0.0f;
t->snap[1] = t->snap[2] = 1.0f;
copy_v3_fl(t->num.val_inc, t->snap[1]);
t->num.unit_sys = t->scene->unit.system;
/* No time unit supporting frames currently... */
t->num.unit_type[0] = B_UNIT_NONE;
}
static void headerTimeTranslate(TransInfo *t, char str[UI_MAX_DRAW_STR])
{
char tvec[NUM_STR_REP_LEN * 3];
int ofs = 0;
/* if numeric input is active, use results from that, otherwise apply snapping to result */
if (hasNumInput(&t->num)) {
outputNumInput(&(t->num), tvec, &t->scene->unit);
}
else {
const Scene *scene = t->scene;
const short autosnap = getAnimEdit_SnapMode(t);
const double secf = FPS;
float val = t->values[0];
/* apply snapping + frame->seconds conversions */
if (autosnap == SACTSNAP_STEP) {
/* frame step */
val = floorf(val + 0.5f);
}
else if (autosnap == SACTSNAP_TSTEP) {
/* second step */
val = floorf((double)val / secf + 0.5);
}
else if (autosnap == SACTSNAP_SECOND) {
/* nearest second */
val = (float)((double)val / secf);
}
2019-04-22 09:19:45 +10:00
if (autosnap == SACTSNAP_FRAME) {
BLI_snprintf(&tvec[0], NUM_STR_REP_LEN, "%d.00 (%.4f)", (int)val, val);
2019-04-22 09:19:45 +10:00
}
else if (autosnap == SACTSNAP_SECOND) {
BLI_snprintf(&tvec[0], NUM_STR_REP_LEN, "%d.00 sec (%.4f)", (int)val, val);
2019-04-22 09:19:45 +10:00
}
else if (autosnap == SACTSNAP_TSTEP) {
BLI_snprintf(&tvec[0], NUM_STR_REP_LEN, "%.4f sec", val);
2019-04-22 09:19:45 +10:00
}
else {
BLI_snprintf(&tvec[0], NUM_STR_REP_LEN, "%.4f", val);
2019-04-22 09:19:45 +10:00
}
}
ofs += BLI_snprintf(str, UI_MAX_DRAW_STR, IFACE_("DeltaX: %s"), &tvec[0]);
if (t->flag & T_PROP_EDIT_ALL) {
ofs += BLI_snprintf(
str + ofs, UI_MAX_DRAW_STR - ofs, IFACE_(" Proportional size: %.2f"), t->prop_size);
}
}
static void applyTimeTranslateValue(TransInfo *t)
{
Scene *scene = t->scene;
int i;
const short autosnap = getAnimEdit_SnapMode(t);
const double secf = FPS;
float deltax, val /* , valprev */;
FOREACH_TRANS_DATA_CONTAINER (t, tc) {
TransData *td = tc->data;
TransData2D *td2d = tc->data_2d;
2019-04-17 08:44:58 +02:00
/* It doesn't matter whether we apply to t->data or
* t->data2d, but t->data2d is more convenient. */
for (i = 0; i < tc->data_len; i++, td++, td2d++) {
/* it is assumed that td->extra is a pointer to the AnimData,
* whose active action is where this keyframe comes from
* (this is only valid when not in NLA)
*/
AnimData *adt = (t->spacetype != SPACE_NLA) ? td->extra : NULL;
/* valprev = *td->val; */ /* UNUSED */
/* check if any need to apply nla-mapping */
if (adt && (t->spacetype != SPACE_SEQ)) {
deltax = t->values[0];
if (autosnap == SACTSNAP_TSTEP) {
deltax = (float)(floor(((double)deltax / secf) + 0.5) * secf);
}
else if (autosnap == SACTSNAP_STEP) {
deltax = floorf(deltax + 0.5f);
}
val = BKE_nla_tweakedit_remap(adt, td->ival, NLATIME_CONVERT_MAP);
val += deltax * td->factor;
*(td->val) = BKE_nla_tweakedit_remap(adt, val, NLATIME_CONVERT_UNMAP);
}
else {
deltax = val = t->values[0];
if (autosnap == SACTSNAP_TSTEP) {
val = (float)(floor(((double)deltax / secf) + 0.5) * secf);
}
else if (autosnap == SACTSNAP_STEP) {
val = floorf(val + 0.5f);
}
*(td->val) = td->ival + val;
}
/* apply nearest snapping */
doAnimEdit_SnapFrame(t, td, td2d, adt, autosnap);
}
}
}
static void applyTimeTranslate(TransInfo *t, const int mval[2])
{
View2D *v2d = (View2D *)t->view;
char str[UI_MAX_DRAW_STR];
/* calculate translation amount from mouse movement - in 'time-grid space' */
if (t->flag & T_MODAL) {
float cval[2], sval[2];
UI_view2d_region_to_view(v2d, mval[0], mval[0], &cval[0], &cval[1]);
UI_view2d_region_to_view(v2d, t->mouse.imval[0], t->mouse.imval[0], &sval[0], &sval[1]);
/* we only need to calculate effect for time (applyTimeTranslate only needs that) */
t->values[0] = cval[0] - sval[0];
}
/* handle numeric-input stuff */
t->vec[0] = t->values[0];
applyNumInput(&t->num, &t->vec[0]);
t->values[0] = t->vec[0];
headerTimeTranslate(t, str);
applyTimeTranslateValue(t);
recalcData(t);
ED_area_status_text(t->sa, str);
}
/** \} */
/* -------------------------------------------------------------------- */
/* Transform (Animation Time Slide) */
/** \name Transform Animation Time Slide
* \{ */
static void initTimeSlide(TransInfo *t)
{
/* this tool is only really available in the Action Editor... */
if (t->spacetype == SPACE_ACTION) {
SpaceAction *saction = (SpaceAction *)t->sa->spacedata.first;
/* set flag for drawing stuff */
saction->flag |= SACTION_MOVING;
}
else {
t->state = TRANS_CANCEL;
}
t->mode = TFM_TIME_SLIDE;
t->transform = applyTimeSlide;
initMouseInputMode(t, &t->mouse, INPUT_NONE);
{
Scene *scene = t->scene;
float *range;
t->custom.mode.data = range = MEM_mallocN(sizeof(float[2]), "TimeSlide Min/Max");
t->custom.mode.use_free = true;
float min = 999999999.0f, max = -999999999.0f;
int i;
FOREACH_TRANS_DATA_CONTAINER (t, tc) {
TransData *td = tc->data;
for (i = 0; i < tc->data_len; i++, td++) {
AnimData *adt = (t->spacetype != SPACE_NLA) ? td->extra : NULL;
float val = *(td->val);
/* strip/action time to global (mapped) time */
2019-04-22 09:19:45 +10:00
if (adt) {
val = BKE_nla_tweakedit_remap(adt, val, NLATIME_CONVERT_MAP);
2019-04-22 09:19:45 +10:00
}
2019-04-22 09:19:45 +10:00
if (min > val) {
min = val;
2019-04-22 09:19:45 +10:00
}
if (max < val) {
max = val;
2019-04-22 09:19:45 +10:00
}
}
}
if (min == max) {
/* just use the current frame ranges */
min = (float)PSFRA;
max = (float)PEFRA;
}
range[0] = min;
range[1] = max;
}
/* num-input has max of (n-1) */
t->idx_max = 0;
t->num.flag = 0;
t->num.idx_max = t->idx_max;
/* initialize snap like for everything else */
t->snap[0] = 0.0f;
t->snap[1] = t->snap[2] = 1.0f;
copy_v3_fl(t->num.val_inc, t->snap[1]);
t->num.unit_sys = t->scene->unit.system;
/* No time unit supporting frames currently... */
t->num.unit_type[0] = B_UNIT_NONE;
}
static void headerTimeSlide(TransInfo *t, const float sval, char str[UI_MAX_DRAW_STR])
{
char tvec[NUM_STR_REP_LEN * 3];
if (hasNumInput(&t->num)) {
outputNumInput(&(t->num), tvec, &t->scene->unit);
}
else {
const float *range = t->custom.mode.data;
float minx = range[0];
float maxx = range[1];
float cval = t->values[0];
float val;
val = 2.0f * (cval - sval) / (maxx - minx);
CLAMP(val, -1.0f, 1.0f);
BLI_snprintf(&tvec[0], NUM_STR_REP_LEN, "%.4f", val);
}
BLI_snprintf(str, UI_MAX_DRAW_STR, IFACE_("TimeSlide: %s"), &tvec[0]);
}
static void applyTimeSlideValue(TransInfo *t, float sval)
{
int i;
const float *range = t->custom.mode.data;
float minx = range[0];
float maxx = range[1];
/* set value for drawing black line */
if (t->spacetype == SPACE_ACTION) {
SpaceAction *saction = (SpaceAction *)t->sa->spacedata.first;
float cvalf = t->values[0];
saction->timeslide = cvalf;
}
2019-04-17 08:44:58 +02:00
/* It doesn't matter whether we apply to t->data or
* t->data2d, but t->data2d is more convenient. */
FOREACH_TRANS_DATA_CONTAINER (t, tc) {
TransData *td = tc->data;
for (i = 0; i < tc->data_len; i++, td++) {
/* it is assumed that td->extra is a pointer to the AnimData,
* whose active action is where this keyframe comes from
* (this is only valid when not in NLA)
*/
AnimData *adt = (t->spacetype != SPACE_NLA) ? td->extra : NULL;
float cval = t->values[0];
/* only apply to data if in range */
if ((sval > minx) && (sval < maxx)) {
float cvalc = CLAMPIS(cval, minx, maxx);
float ival = td->ival;
float timefac;
/* NLA mapping magic here works as follows:
* - "ival" goes from strip time to global time
* - calculation is performed into td->val in global time
* (since sval and min/max are all in global time)
* - "td->val" then gets put back into strip time
*/
if (adt) {
/* strip to global */
ival = BKE_nla_tweakedit_remap(adt, ival, NLATIME_CONVERT_MAP);
}
/* left half? */
if (ival < sval) {
timefac = (sval - ival) / (sval - minx);
*(td->val) = cvalc - timefac * (cvalc - minx);
}
else {
timefac = (ival - sval) / (maxx - sval);
*(td->val) = cvalc + timefac * (maxx - cvalc);
}
if (adt) {
/* global to strip */
*(td->val) = BKE_nla_tweakedit_remap(adt, *(td->val), NLATIME_CONVERT_UNMAP);
}
}
}
}
}
static void applyTimeSlide(TransInfo *t, const int mval[2])
{
View2D *v2d = (View2D *)t->view;
float cval[2], sval[2];
const float *range = t->custom.mode.data;
float minx = range[0];
float maxx = range[1];
char str[UI_MAX_DRAW_STR];
/* calculate mouse co-ordinates */
UI_view2d_region_to_view(v2d, mval[0], mval[1], &cval[0], &cval[1]);
UI_view2d_region_to_view(v2d, t->mouse.imval[0], t->mouse.imval[1], &sval[0], &sval[1]);
/* t->values[0] stores cval[0], which is the current mouse-pointer location (in frames) */
// XXX Need to be able to repeat this
/* t->values[0] = cval[0]; */ /* UNUSED (reset again later). */
/* handle numeric-input stuff */
t->vec[0] = 2.0f * (cval[0] - sval[0]) / (maxx - minx);
applyNumInput(&t->num, &t->vec[0]);
t->values[0] = (maxx - minx) * t->vec[0] / 2.0f + sval[0];
headerTimeSlide(t, sval[0], str);
applyTimeSlideValue(t, sval[0]);
recalcData(t);
ED_area_status_text(t->sa, str);
}
/** \} */
/* -------------------------------------------------------------------- */
/* Transform (Animation Time Scale) */
/** \name Transform Animation Time Scale
* \{ */
static void initTimeScale(TransInfo *t)
{
float center[2];
/* this tool is only really available in the Action Editor
* AND NLA Editor (for strip scaling)
*/
if (ELEM(t->spacetype, SPACE_ACTION, SPACE_NLA) == 0) {
t->state = TRANS_CANCEL;
}
t->mode = TFM_TIME_SCALE;
t->transform = applyTimeScale;
/* recalculate center2d to use CFRA and mouse Y, since that's
* what is used in time scale */
if ((t->flag & T_OVERRIDE_CENTER) == 0) {
t->center_global[0] = t->scene->r.cfra;
projectFloatView(t, t->center_global, center);
center[1] = t->mouse.imval[1];
}
/* force a reinit with the center2d used here */
initMouseInput(t, &t->mouse, center, t->mouse.imval, false);
initMouseInputMode(t, &t->mouse, INPUT_SPRING_FLIP);
t->flag |= T_NULL_ONE;
t->num.val_flag[0] |= NUM_NULL_ONE;
/* num-input has max of (n-1) */
t->idx_max = 0;
t->num.flag = 0;
t->num.idx_max = t->idx_max;
/* initialize snap like for everything else */
t->snap[0] = 0.0f;
t->snap[1] = t->snap[2] = 1.0f;
copy_v3_fl(t->num.val_inc, t->snap[1]);
t->num.unit_sys = t->scene->unit.system;
t->num.unit_type[0] = B_UNIT_NONE;
}
static void headerTimeScale(TransInfo *t, char str[UI_MAX_DRAW_STR])
{
char tvec[NUM_STR_REP_LEN * 3];
2019-04-22 09:19:45 +10:00
if (hasNumInput(&t->num)) {
outputNumInput(&(t->num), tvec, &t->scene->unit);
2019-04-22 09:19:45 +10:00
}
else {
BLI_snprintf(&tvec[0], NUM_STR_REP_LEN, "%.4f", t->values[0]);
2019-04-22 09:19:45 +10:00
}
BLI_snprintf(str, UI_MAX_DRAW_STR, IFACE_("ScaleX: %s"), &tvec[0]);
}
static void applyTimeScaleValue(TransInfo *t)
{
Scene *scene = t->scene;
int i;
const short autosnap = getAnimEdit_SnapMode(t);
const double secf = FPS;
FOREACH_TRANS_DATA_CONTAINER (t, tc) {
TransData *td = tc->data;
TransData2D *td2d = tc->data_2d;
for (i = 0; i < tc->data_len; i++, td++, td2d++) {
/* it is assumed that td->extra is a pointer to the AnimData,
* whose active action is where this keyframe comes from
* (this is only valid when not in NLA)
*/
AnimData *adt = (t->spacetype != SPACE_NLA) ? td->extra : NULL;
float startx = CFRA;
float fac = t->values[0];
if (autosnap == SACTSNAP_TSTEP) {
fac = (float)(floor((double)fac / secf + 0.5) * secf);
}
else if (autosnap == SACTSNAP_STEP) {
fac = floorf(fac + 0.5f);
}
/* take proportional editing into account */
fac = ((fac - 1.0f) * td->factor) + 1;
/* check if any need to apply nla-mapping */
2019-04-22 09:19:45 +10:00
if (adt) {
startx = BKE_nla_tweakedit_remap(adt, startx, NLATIME_CONVERT_UNMAP);
2019-04-22 09:19:45 +10:00
}
/* now, calculate the new value */
*(td->val) = ((td->ival - startx) * fac) + startx;
/* apply nearest snapping */
doAnimEdit_SnapFrame(t, td, td2d, adt, autosnap);
}
}
}
static void applyTimeScale(TransInfo *t, const int UNUSED(mval[2]))
{
char str[UI_MAX_DRAW_STR];
2018-05-13 06:44:03 +02:00
/* handle numeric-input stuff */
t->vec[0] = t->values[0];
applyNumInput(&t->num, &t->vec[0]);
t->values[0] = t->vec[0];
headerTimeScale(t, str);
applyTimeScaleValue(t);
recalcData(t);
ED_area_status_text(t->sa, str);
}
/** \} */
/* TODO, move to: transform_query.c */
bool checkUseAxisMatrix(TransInfo *t)
{
/* currently only checks for editmode */
if (t->flag & T_EDIT) {
if ((t->around == V3D_AROUND_LOCAL_ORIGINS) &&
(ELEM(t->obedit_type, OB_MESH, OB_CURVE, OB_MBALL, OB_ARMATURE))) {
/* not all editmode supports axis-matrix */
return true;
}
}
return false;
}