Currently the link limit of sockets is stored in bNodeSocket->limit.
This allows for a lot of flexibility, but is also very redundant.
In every case I've had to deal with so far, it would have "more correct"
to set the link limit per socket type and not per socket. I did not enforce
this constraint yet, because the link limit is exposed in the Python API,
which I did not want to break here.
In the future it might even make sense to only support only three kinds of link limits:
a) no links, b) at most one link, c) an arbitrary number links links. The other link
limits usually don't work well with tools (e.g. which link should be removed when a new
one is connected?) and is not used in practice. However, that is for another day.
Eventually, I would like to get rid of bNodeSocket->limit completely and replace it
either with fixed link limits or a callback in bNodeSocketType.
This patch consists of three parts:
**1. Support defining link limit in socket type**
This introduces a new `nodeSocketLinkLimit` function that serves as an indirection to
hide where the link limit of a socket is defined.
**2. Define link limits for builtin sockets on socket type**
Data sockets: one input, many outputs
Virtual sockets: one input, one output
Undefined sockets: many inputs, many outputs (to avoid that links are removed when the type of the socket is not known)
**3. Remove `bNodeSocketTemplate->limit`**
This wasn't used anymore after the second commit. Removing it simplifies socket definitions
in hundreds of places and removes a lot of redundancy.
Differential Revision: https://developer.blender.org/D7038
Reviewers: brecht
This further separates requested attributes and textures from the actual
node graph, that can be retained after the graph has been compiled and
freed. It makes it easier to add volume grids as a native concept, which
sits somewhere between an attribute and a texture.
It also adds explicit link types for UDIM tile mapping, rather than
relying on fairly hidden logic.
This patch adds new render passes to EEVEE. These passes include:
* Emission
* Diffuse Light
* Diffuse Color
* Glossy Light
* Glossy Color
* Environment
* Volume Scattering
* Volume Transmission
* Bloom
* Shadow
With these passes it will be possible to use EEVEE effectively for
compositing. During development we kept a close eye on how to get similar
results compared to cycles render passes there are some differences that
are related to how EEVEE works. For EEVEE we combined the passes to
`Diffuse` and `Specular`. There are no transmittance or sss passes anymore.
Cycles will be changed accordingly.
Cycles volume transmittance is added to multiple surface col passes. For
EEVEE we left the volume transmittance as a separate pass.
Known Limitations
* All materials that use alpha blending will not be rendered in the render
passes. Other transparency modes are supported.
* More GPU memory is required to store the render passes. When rendering
a HD image with all render passes enabled at max extra 570MB GPU memory is
required.
Implementation Details
An overview of render passes have been described in
https://wiki.blender.org/wiki/Source/Render/EEVEE/RenderPasses
Future Developments
* In this implementation the materials are re-rendered for Diffuse/Glossy
and Emission passes. We could use multi target rendering to improve the
render speed.
* Other passes can be added later
* Don't render material based passes when only requesting AO or Shadow.
* Add more passes to the system. These could include Cryptomatte, AOV's, Vector,
ObjectID, MaterialID, UV.
Reviewed By: Clément Foucault
Differential Revision: https://developer.blender.org/D6331
This patch provides an optimisation for Ease (Smoothstep) setting in the color ramp node.
This optimisation exists already for Constant and Linear modes.
Reviewed By: fclem
Differential Revision: https://developer.blender.org/D6880
This node provides the ability to rotate a vector around a `center` point using either `Axis Angle` , `Single Axis` or `Euler` methods.
Reviewed By: #cycles, brecht
Differential Revision: https://developer.blender.org/D3789
* Direction mode X, Y and Z to align with axes rather than diagonal or
spherical as previously. X is the new default, existing files will
use diagonal or spherical for compatibility.
* Phase offset to offset the wave along its direction, for purposes like
animation and distortion.
https://developer.blender.org/D6382
This adds some extra functions recently added to the float Maths Node.
Not all functions have been ported over in this patch.
Also:
+ Tidy up menu
+ Change node color to match other vector nodes, this helps distinguish vector and float nodes in the tree
+ Move shared OSL functions to new header node_math.h
Reviewed By: brecht
Differential Revision: https://developer.blender.org/D6713
This allows for more flexibility in Compositing compared to the
hardcoded alpha-over that is currently used.
Reviewed By: brecht
Differential Revision: https://developer.blender.org/D6829
Lacunarity parameter determines scaling of subsequent octaves in fractal
noises. For example, Noise node have this scaling hardcoded to 2.0. Each
octave have twice bigger scale than previous one, resulting in finer details.
By design fractal noises that generate octaves with same seed should not
have Lacunarity set to 1.0, since then it just stacks up identical noises.
Differential Revision: https://developer.blender.org/D6742
This is a more correct fix to the issue Brecht was fixing in D6600.
While the fix in that patch worked fine for linking it broke ASAN
runtime under some circumstances.
For example, `make full debug developer` would compile, but trying
to start blender will cause assert failure in ASAN (related on check
that ASAN is not running already).
Top-level idea: leave it to CMake to keep track of dependency graph.
The root of the issue comes to the fact that target like "blender" is
configured to use a lot of static libraries coming from Blender sources
and to use external static libraries. There is nothing which ensures
order between blender's and external libraries. Only order of blender
libraries is guaranteed.
It was possible that due to a cycle or other circumstances some of
blender libraries would have been passed to linker after libraries
it uses, causing linker errors.
For example, this order will likely fail:
libbf_blenfont.a libfreetype6.a libbf_blenfont.a
This change makes it so blender libraries are explicitly provided
their dependencies to an external libraries, which allows CMake to
ensure they are always linked against them.
General rule here: if bf_foo depends on an external library it is
to be provided to LIBS for bf_foo.
For example, if bf_blenkernel depends on opensubdiv then LIBS in
blenkernel's CMakeLists.txt is to include OPENSUBDIB_LIBRARIES.
The change is made based on searching for used include folders
such as OPENSUBDIV_INCLUDE_DIRS and adding corresponding libraries
to LIBS ion that CMakeLists.txt. Transitive dependencies are not
simplified by this approach, but I am not aware of any downside of
this: CMake should be smart enough to simplify them on its side.
And even if not, this shouldn't affect linking time.
Benefit of not relying on transitive dependencies is that build
system is more robust towards future changes. For example, if
bf_intern_opensubiv is no longer depends on OPENSUBDIV_LIBRARIES
and all such code is moved to bf_blenkernel this will not break
linking.
The not-so-trivial part is change to blender_add_lib (and its
version in Cycles). The complexity is caused by libraries being
provided as a single list argument which doesn't allow to use
different release and debug libraries on Windows. The idea is:
- Have every library prefixed as "optimized" or "debug" if
separation is needed (non-prefixed libraries will be considered
"generic").
- Loop through libraries passed to function and do simple parsing
which will look for "optimized" and "debug" words and specify
following library to corresponding category.
This isn't something particularly great. Alternative would be to
use target_link_libraries() directly, which sounds like more code
but which is more explicit and allows to have more flexibility
and control comparing to wrapper approach.
Tested the following configurations on Linux, macOS and Windows:
- make full debug developer
- make full release developer
- make lite debug developer
- make lite release developer
NOTE: Linux libraries needs to be compiled with D6641 applied,
otherwise, depending on configuration, it's possible to run into
duplicated zlib symbols error.
Differential Revision: https://developer.blender.org/D6642
Based on @fclem's suggestion in D6421, this commit implements support for
storing all tiles of a UDIM texture in a single 2D array texture on the GPU.
Previously, Eevee was binding one OpenGL texture per tile, quickly running
into hardware limits with nontrivial UDIM texture sets.
Workbench meanwhile had no UDIM support at all, as reusing the per-tile
approach would require splitting the mesh by tile as well as texture.
With this commit, both Workbench as well as Eevee now support huge numbers
of tiles, with the eventual limits being GPU memory and ultimately
GL_MAX_ARRAY_TEXTURE_LAYERS, which tends to be in the 1000s on modern GPUs.
Initially my plan was to have one array texture per unique size, but managing
the different textures and keeping everything consistent ended up being way
too complex.
Therefore, we now use a simpler version that allocates a texture that
is large enough to fit the largest tile and then packs all tiles into as many
layers as necessary.
As a result, each UDIM texture only binds two textures (one for the actual
images, one for metadata) regardless of how many tiles are used.
Note that this rolls back per-tile GPUTextures, meaning that we again have
per-Image GPUTextures like we did before the original UDIM commit,
but now with four instead of two types.
Reviewed By: fclem
Differential Revision: https://developer.blender.org/D6456
This patch contains the work that I did during my week at the Code Quest - adding support for tiled images to Blender.
With this patch, images now contain a list of tiles. By default, this just contains one tile, but if the source type is set to Tiled, the user can add additional tiles. When acquiring an ImBuf, the tile to be loaded is specified in the ImageUser.
Therefore, code that is not yet aware of tiles will just access the default tile as usual.
The filenames of the additional tiles are derived from the original filename according to the UDIM naming scheme - the filename contains an index that is calculated as (1001 + 10*<y coordinate of the tile> + <x coordinate of the tile>), where the x coordinate never goes above 9.
Internally, the various tiles are stored in a cache just like sequences. When acquired for the first time, the code will try to load the corresponding file from disk. Alternatively, a new operator can be used to initialize the tile similar to the New Image operator.
The following features are supported so far:
- Automatic detection and loading of all tiles when opening the first tile (1001)
- Saving all tiles
- Adding and removing tiles
- Filling tiles with generated images
- Drawing all tiles in the Image Editor
- Viewing a tiled grid even if no image is selected
- Rendering tiled images in Eevee
- Rendering tiled images in Cycles (in SVM mode)
- Automatically skipping loading of unused tiles in Cycles
- 2D texture painting (also across tiles)
- 3D texture painting (also across tiles, only limitation: individual faces can not cross tile borders)
- Assigning custom labels to individual tiles (drawn in the Image Editor instead of the ID)
- Different resolutions between tiles
There still are some missing features that will be added later (see T72390):
- Workbench engine support
- Packing/Unpacking support
- Baking support
- Cycles OSL support
- many other Blender features that rely on images
Thanks to Brecht for the review and to all who tested the intermediate versions!
Differential Revision: https://developer.blender.org/D3509
Custom render passes are added in the Shader AOVs panel in the view layer
settings, with a name and data type. In shader nodes, an AOV Output node
is then used to output either a value or color to the pass.
Arbitrary names can be used for these passes, as long as they don't conflict
with built-in passes that are enabled. The AOV Output node can be used in both
material and world shader nodes.
Implemented by Lukas, with tweaks by Brecht.
Differential Revision: https://developer.blender.org/D4837
This is only supposed to happen when copying nodes that are part of the user
editable database, not temporary copies for the dependency graph.
The LIB_ID_COPY_LOCALIZE test was wrong because it is a combination of multiple
bitflags as pointed out by Bastien, and was actually redundant anyway since
LIB_ID_CREATE_NO_MAIN is part of it.
Modes: Linear interpolation (default), stepped linear, smoothstep and smootherstep.
This also includes an additional option for the **Clamp node** to switch between **Min Max** (default) and **Range** mode.
This was needed to allow clamping when **To Max** is less than **To Min**.
Reviewed By: JacquesLucke, brecht
Differential Revision: https://developer.blender.org/D5827
When creating shaders and using maths functions it is expected that Blender should match functions in other DCC applications, game engines and shading languages such as GLSL and OSL.
This patch adds missing functions to the Blender maths node.
Ideally, it would be nice to have these functions available to vectors too but that is not part of this patch.
This patch adds the following functions trunc, snap, wrap, compare, pingpong, sign, radians, degrees, cosh, sinh, tanh, exp, smoothmin and inversesqrt.
Sign function is based on GLSL and OSL functions and returns zero when x == 0.
Differential Revision: https://developer.blender.org/D5957
Extend options are currently stored per curve. This was not clearly
communicated to the user and they expected this to be a setting per
CurveMapping.
This change will move the option from `Curve` to `CurveMapping`. In
order to support this the API had to be changed.
BPY: CurveMap.evaluate is also moved to CurveMapping.evaluate what
breaks Python API. Cycles has been updated but other add-ons have
not. After release of 2.81 we can merge this to master and adapt
the add-ons.
Reviewed By: campbellbarton
Differential Revision: https://developer.blender.org/D6169
The Random Per Island attribute is a random float associated with each
connected component (island) of the mesh. It is particularly useful
when artists want to add variations to meshes composed of separate
units. Like tree leaves created using particle systems, wood planks
created using array modifiers, or abstract splines created using AN.
Reviewed By: Sergey Sharybin, Jacques Lucke
Differential Revision: https://developer.blender.org/D6154
Was caused by non-normalized coordinates (normals). Note this is not 100%
correct as the dFdx functions can be the same for packs of 4 pixels and the
derivated value can only be correct for one pixels.
This is because smoothed normals are a non-linear function (because of the
normalization).
The correct fix would be to do the dFdx offset BEFORE any normalization.
Was caused by the bump node not being evaluated because the other branch
was evaluated before.
To fix this, we use fromnode instead of tonode.
Also we fix a potential issue with recursiveness because
ntree_shader_copy_branch() also use nodeChainIterBackwards() which would
reset the iter_flag in the middle of the parent iteration. Use iter_flag
as a bitflag for each iteration to fix this.
The gain socket in the Musgrave node should be available in the ridged
multifractal mode. The logic for the availability was incorrect.
Reviewers: brecht
Differential Revision: https://developer.blender.org/D5989
Should speed up eevee mesh update a tiny bit in certain particular cases
(deform modifier + (shader using texcoord (but not generated output) OR
principled bsdf OR geometry node (except tangent output))).