This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenkernel/intern/collision.c

1730 lines
52 KiB
C
Raw Normal View History

2011-02-23 18:03:40 +00:00
/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) Blender Foundation
* All rights reserved.
*/
/** \file
* \ingroup bke
2011-02-27 20:40:57 +00:00
*/
#include "MEM_guardedalloc.h"
#include "DNA_cloth_types.h"
#include "DNA_collection_types.h"
#include "DNA_effect_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_object_force_types.h"
#include "DNA_object_types.h"
#include "DNA_scene_types.h"
#include "BLI_blenlib.h"
#include "BLI_edgehash.h"
#include "BLI_linklist.h"
#include "BLI_math.h"
#include "BLI_task.h"
#include "BLI_threads.h"
#include "BLI_utildefines.h"
2013-04-05 17:56:54 +00:00
#include "BKE_cloth.h"
Collections and groups unification OVERVIEW * In 2.7 terminology, all layers and groups are now collection datablocks. * These collections are nestable, linkable, instanceable, overrideable, .. which opens up new ways to set up scenes and link + override data. * Viewport/render visibility and selectability are now a part of the collection and shared across all view layers and linkable. * View layers define which subset of the scene collection hierarchy is excluded for each. For many workflows one view layer can be used, these are more of an advanced feature now. OUTLINER * The outliner now has a "View Layer" display mode instead of "Collections", which can display the collections and/or objects in the view layer. * In this display mode, collections can be excluded with the right click menu. These will then be greyed out and their objects will be excluded. * To view collections not linked to any scene, the "Blender File" display mode can be used, with the new filtering option to just see Colleciton datablocks. * The outliner right click menus for collections and objects were reorganized. * Drag and drop still needs to be improved. Like before, dragging the icon or text gives different results, we'll unify this later. LINKING AND OVERRIDES * Collections can now be linked into the scene without creating an instance, with the link/append operator or from the collections view in the outliner. * Collections can get static overrides with the right click menu in the outliner, but this is rather unreliable and not clearly communicated at the moment. * We still need to improve the make override operator to turn collection instances into collections with overrides directly in the scene. PERFORMANCE * We tried to make performance not worse than before and improve it in some cases. The main thing that's still a bit slower is multiple scenes, we have to change the layer syncing to only updated affected scenes. * Collections keep a list of their parent collections for faster incremental updates in syncing and caching. * View layer bases are now in a object -> base hash to avoid quadratic time lookups internally and in API functions like visible_get(). VERSIONING * Compatibility with 2.7 files should be improved due to the new visibility controls. Of course users may not want to set up their scenes differently now to avoid having separate layers and groups. * Compatibility with 2.8 is mostly there, and was tested on Eevee demo and Hero files. There's a few things which are know to be not quite compatible, like nested layer collections inside groups. * The versioning code for 2.8 files is quite complicated, and isolated behind #ifdef so it can be removed at the end of the release cycle. KNOWN ISSUES * The G-key group operators in the 3D viewport were left mostly as is, they need to be modified still to fit better. * Same for the groups panel in the object properties. This needs to be updated still, or perhaps replaced by something better. * Collections must all have a unique name. Less restrictive namespacing is to be done later, we'll have to see how important this is as all objects within the collections must also have a unique name anyway. * Full scene copy and delete scene are exactly doing the right thing yet. Differential Revision: https://developer.blender.org/D3383 https://code.blender.org/2018/05/collections-and-groups/
2018-04-30 15:57:22 +02:00
#include "BKE_collection.h"
#include "BKE_effect.h"
#include "BKE_layer.h"
#include "BKE_modifier.h"
2013-04-05 17:56:54 +00:00
#include "BKE_scene.h"
#include "BKE_collision.h"
#include "BLI_kdopbvh.h"
#include "DEG_depsgraph.h"
#include "DEG_depsgraph_physics.h"
#include "DEG_depsgraph_query.h"
#ifdef WITH_ELTOPO
# include "eltopo-capi.h"
#endif
typedef struct ColDetectData {
ClothModifierData *clmd;
CollisionModifierData *collmd;
BVHTreeOverlap *overlap;
CollPair *collisions;
bool culling;
bool use_normal;
bool collided;
} ColDetectData;
typedef struct SelfColDetectData {
ClothModifierData *clmd;
BVHTreeOverlap *overlap;
CollPair *collisions;
bool collided;
} SelfColDetectData;
/***********************************
2019-04-18 07:21:26 +02:00
* Collision modifier code start
***********************************/
/* step is limited from 0 (frame start position) to 1 (frame end position) */
void collision_move_object(CollisionModifierData *collmd,
const float step,
const float prevstep,
const bool moving_bvh)
{
unsigned int i = 0;
/* the collider doesn't move this frame */
if (collmd->is_static) {
for (i = 0; i < collmd->mvert_num; i++) {
zero_v3(collmd->current_v[i].co);
}
return;
}
for (i = 0; i < collmd->mvert_num; i++) {
interp_v3_v3v3(collmd->current_x[i].co, collmd->x[i].co, collmd->xnew[i].co, prevstep);
interp_v3_v3v3(collmd->current_xnew[i].co, collmd->x[i].co, collmd->xnew[i].co, step);
sub_v3_v3v3(collmd->current_v[i].co, collmd->current_xnew[i].co, collmd->current_x[i].co);
}
bvhtree_update_from_mvert(collmd->bvhtree,
collmd->current_xnew,
collmd->current_x,
collmd->tri,
collmd->tri_num,
moving_bvh);
}
BVHTree *bvhtree_build_from_mvert(const MVert *mvert,
const struct MVertTri *tri,
int tri_num,
float epsilon)
{
BVHTree *tree;
const MVertTri *vt;
int i;
tree = BLI_bvhtree_new(tri_num, epsilon, 4, 26);
/* fill tree */
for (i = 0, vt = tri; i < tri_num; i++, vt++) {
float co[3][3];
copy_v3_v3(co[0], mvert[vt->tri[0]].co);
copy_v3_v3(co[1], mvert[vt->tri[1]].co);
copy_v3_v3(co[2], mvert[vt->tri[2]].co);
BLI_bvhtree_insert(tree, i, co[0], 3);
}
/* balance tree */
BLI_bvhtree_balance(tree);
return tree;
}
void bvhtree_update_from_mvert(BVHTree *bvhtree,
const MVert *mvert,
const MVert *mvert_moving,
const MVertTri *tri,
int tri_num,
bool moving)
{
const MVertTri *vt;
int i;
if ((bvhtree == NULL) || (mvert == NULL)) {
return;
}
if (mvert_moving == NULL) {
moving = false;
}
for (i = 0, vt = tri; i < tri_num; i++, vt++) {
float co[3][3];
bool ret;
copy_v3_v3(co[0], mvert[vt->tri[0]].co);
copy_v3_v3(co[1], mvert[vt->tri[1]].co);
copy_v3_v3(co[2], mvert[vt->tri[2]].co);
/* copy new locations into array */
if (moving) {
float co_moving[3][3];
/* update moving positions */
copy_v3_v3(co_moving[0], mvert_moving[vt->tri[0]].co);
copy_v3_v3(co_moving[1], mvert_moving[vt->tri[1]].co);
copy_v3_v3(co_moving[2], mvert_moving[vt->tri[2]].co);
ret = BLI_bvhtree_update_node(bvhtree, i, &co[0][0], &co_moving[0][0], 3);
}
else {
ret = BLI_bvhtree_update_node(bvhtree, i, &co[0][0], NULL, 3);
}
/* check if tree is already full */
if (ret == false) {
break;
}
}
BLI_bvhtree_update_tree(bvhtree);
}
2019-04-18 07:21:26 +02:00
/* ***************************
* Collision modifier code end
* *************************** */
BLI_INLINE int next_ind(int i)
{
return (++i < 3) ? i : 0;
}
static float compute_collision_point_tri_tri(const float a1[3],
const float a2[3],
const float a3[3],
const float b1[3],
const float b2[3],
const float b3[3],
bool culling,
bool use_normal,
float r_a[3],
float r_b[3],
float r_vec[3])
{
float a[3][3];
float b[3][3];
float dist = FLT_MAX;
float tmp_co1[3], tmp_co2[3];
float isect_a[3], isect_b[3];
float tmp, tmp_vec[3];
float normal[3], cent[3];
bool backside = false;
copy_v3_v3(a[0], a1);
copy_v3_v3(a[1], a2);
copy_v3_v3(a[2], a3);
copy_v3_v3(b[0], b1);
copy_v3_v3(b[1], b2);
copy_v3_v3(b[2], b3);
/* Find intersections. */
int tri_a_edge_isect_count;
const bool is_intersecting = isect_tri_tri_v3_ex(
a, b, isect_a, isect_b, &tri_a_edge_isect_count);
/* Determine collision side. */
if (culling) {
normal_tri_v3(normal, b[0], b[1], b[2]);
mid_v3_v3v3v3(cent, b[0], b[1], b[2]);
if (!is_intersecting) {
for (int i = 0; i < 3; i++) {
sub_v3_v3v3(tmp_vec, a[i], cent);
if (dot_v3v3(tmp_vec, normal) < 0.0f) {
backside = true;
break;
}
}
}
else if (tri_a_edge_isect_count != 1) {
/* It is not Edge intersection. */
backside = true;
}
}
else if (use_normal) {
normal_tri_v3(normal, b[0], b[1], b[2]);
}
if (tri_a_edge_isect_count == 1) {
/* Edge intersection. */
copy_v3_v3(r_a, isect_a);
copy_v3_v3(r_b, isect_b);
if (use_normal) {
copy_v3_v3(r_vec, normal);
}
else {
sub_v3_v3v3(r_vec, r_b, r_a);
}
return 0.0f;
}
if (backside) {
float maxdist = 0.0f;
bool found = false;
/* Point projections. */
for (int i = 0; i < 3; i++) {
if (isect_ray_tri_v3(a[i], normal, b[0], b[1], b[2], &tmp, NULL)) {
if (tmp > maxdist) {
maxdist = tmp;
copy_v3_v3(r_a, a[i]);
madd_v3_v3v3fl(r_b, a[i], normal, tmp);
found = true;
}
}
}
negate_v3(normal);
for (int i = 0; i < 3; i++) {
if (isect_ray_tri_v3(b[i], normal, a[0], a[1], a[2], &tmp, NULL)) {
if (tmp > maxdist) {
maxdist = tmp;
madd_v3_v3v3fl(r_a, b[i], normal, tmp);
copy_v3_v3(r_b, b[i]);
found = true;
}
}
}
negate_v3(normal);
/* Edge projections. */
for (int i = 0; i < 3; i++) {
float dir[3];
sub_v3_v3v3(tmp_vec, b[next_ind(i)], b[i]);
cross_v3_v3v3(dir, tmp_vec, normal);
for (int j = 0; j < 3; j++) {
if (isect_line_plane_v3(tmp_co1, a[j], a[next_ind(j)], b[i], dir) &&
point_in_slice_seg(tmp_co1, a[j], a[next_ind(j)]) &&
point_in_slice_seg(tmp_co1, b[i], b[next_ind(i)])) {
closest_to_line_v3(tmp_co2, tmp_co1, b[i], b[next_ind(i)]);
sub_v3_v3v3(tmp_vec, tmp_co1, tmp_co2);
tmp = len_v3(tmp_vec);
if ((tmp > maxdist) && (dot_v3v3(tmp_vec, normal) < 0.0f)) {
maxdist = tmp;
copy_v3_v3(r_a, tmp_co1);
copy_v3_v3(r_b, tmp_co2);
found = true;
}
}
}
}
/* If no point is found, will fallback onto regular proximity test below. */
if (found) {
sub_v3_v3v3(r_vec, r_b, r_a);
if (use_normal) {
if (dot_v3v3(normal, r_vec) >= 0.0f) {
copy_v3_v3(r_vec, normal);
}
else {
negate_v3_v3(r_vec, normal);
}
}
return 0.0f;
}
}
/* Closest point. */
for (int i = 0; i < 3; i++) {
closest_on_tri_to_point_v3(tmp_co1, a[i], b[0], b[1], b[2]);
tmp = len_squared_v3v3(tmp_co1, a[i]);
if (tmp < dist) {
dist = tmp;
copy_v3_v3(r_a, a[i]);
copy_v3_v3(r_b, tmp_co1);
}
}
for (int i = 0; i < 3; i++) {
closest_on_tri_to_point_v3(tmp_co1, b[i], a[0], a[1], a[2]);
tmp = len_squared_v3v3(tmp_co1, b[i]);
if (tmp < dist) {
dist = tmp;
copy_v3_v3(r_a, tmp_co1);
copy_v3_v3(r_b, b[i]);
}
}
/* Closest edge. */
if (!is_intersecting) {
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
isect_seg_seg_v3(a[i], a[next_ind(i)], b[j], b[next_ind(j)], tmp_co1, tmp_co2);
tmp = len_squared_v3v3(tmp_co1, tmp_co2);
if (tmp < dist) {
dist = tmp;
copy_v3_v3(r_a, tmp_co1);
copy_v3_v3(r_b, tmp_co2);
}
}
}
}
if (!is_intersecting) {
sub_v3_v3v3(r_vec, r_a, r_b);
dist = sqrtf(dist);
}
else {
sub_v3_v3v3(r_vec, r_b, r_a);
dist = 0.0f;
}
if (culling && use_normal) {
copy_v3_v3(r_vec, normal);
}
else if (use_normal) {
if (dot_v3v3(normal, r_vec) >= 0.0f) {
copy_v3_v3(r_vec, normal);
}
else {
negate_v3_v3(r_vec, normal);
}
}
else if (culling && (dot_v3v3(r_vec, normal) < 0.0f)) {
return FLT_MAX;
}
return dist;
}
static float compute_collision_point_edge_tri(const float a1[3],
const float a2[3],
const float b1[3],
const float b2[3],
const float b3[3],
bool culling,
bool use_normal,
float r_a[3],
float r_b[3],
float r_vec[3])
{
float a[2][3];
float b[3][3];
float dist = FLT_MAX;
float tmp_co1[3], tmp_co2[3];
float isect_a[3];
bool isect = false;
float tmp, tmp_vec[3];
float normal[3], cent[3];
bool backside = false;
copy_v3_v3(a[0], a1);
copy_v3_v3(a[1], a2);
copy_v3_v3(b[0], b1);
copy_v3_v3(b[1], b2);
copy_v3_v3(b[2], b3);
normal_tri_v3(normal, b[0], b[1], b[2]);
/* Find intersection. */
if (isect_line_segment_tri_v3(a[0], a[1], b[0], b[1], b[2], &tmp, NULL)) {
interp_v3_v3v3(isect_a, a[0], a[1], tmp);
isect = true;
}
/* Determine collision side. */
if (culling) {
if (isect) {
backside = true;
}
else {
mid_v3_v3v3v3(cent, b[0], b[1], b[2]);
for (int i = 0; i < 2; i++) {
sub_v3_v3v3(tmp_vec, a[i], cent);
if (dot_v3v3(tmp_vec, normal) < 0.0f) {
backside = true;
break;
}
}
}
}
if (isect) {
/* Edge intersection. */
copy_v3_v3(r_a, isect_a);
copy_v3_v3(r_b, isect_a);
copy_v3_v3(r_vec, normal);
return 0.0f;
}
if (backside) {
float maxdist = 0.0f;
bool found = false;
/* Point projections. */
for (int i = 0; i < 2; i++) {
if (isect_ray_tri_v3(a[i], normal, b[0], b[1], b[2], &tmp, NULL)) {
if (tmp > maxdist) {
maxdist = tmp;
copy_v3_v3(r_a, a[i]);
madd_v3_v3v3fl(r_b, a[i], normal, tmp);
found = true;
}
}
}
/* Edge projections. */
for (int i = 0; i < 3; i++) {
float dir[3];
sub_v3_v3v3(tmp_vec, b[next_ind(i)], b[i]);
cross_v3_v3v3(dir, tmp_vec, normal);
if (isect_line_plane_v3(tmp_co1, a[0], a[1], b[i], dir) &&
point_in_slice_seg(tmp_co1, a[0], a[1]) &&
point_in_slice_seg(tmp_co1, b[i], b[next_ind(i)])) {
closest_to_line_v3(tmp_co2, tmp_co1, b[i], b[next_ind(i)]);
sub_v3_v3v3(tmp_vec, tmp_co1, tmp_co2);
tmp = len_v3(tmp_vec);
if ((tmp > maxdist) && (dot_v3v3(tmp_vec, normal) < 0.0f)) {
maxdist = tmp;
copy_v3_v3(r_a, tmp_co1);
copy_v3_v3(r_b, tmp_co2);
found = true;
}
}
}
/* If no point is found, will fallback onto regular proximity test below. */
if (found) {
sub_v3_v3v3(r_vec, r_b, r_a);
if (use_normal) {
if (dot_v3v3(normal, r_vec) >= 0.0f) {
copy_v3_v3(r_vec, normal);
}
else {
negate_v3_v3(r_vec, normal);
}
}
return 0.0f;
}
}
/* Closest point. */
for (int i = 0; i < 2; i++) {
closest_on_tri_to_point_v3(tmp_co1, a[i], b[0], b[1], b[2]);
tmp = len_squared_v3v3(tmp_co1, a[i]);
if (tmp < dist) {
dist = tmp;
copy_v3_v3(r_a, a[i]);
copy_v3_v3(r_b, tmp_co1);
}
}
/* Closest edge. */
if (!isect) {
for (int j = 0; j < 3; j++) {
isect_seg_seg_v3(a[0], a[1], b[j], b[next_ind(j)], tmp_co1, tmp_co2);
tmp = len_squared_v3v3(tmp_co1, tmp_co2);
if (tmp < dist) {
dist = tmp;
copy_v3_v3(r_a, tmp_co1);
copy_v3_v3(r_b, tmp_co2);
}
}
}
if (isect) {
sub_v3_v3v3(r_vec, r_b, r_a);
dist = 0.0f;
}
else {
sub_v3_v3v3(r_vec, r_a, r_b);
dist = sqrtf(dist);
}
if (culling && use_normal) {
copy_v3_v3(r_vec, normal);
}
else if (use_normal) {
if (dot_v3v3(normal, r_vec) >= 0.0f) {
copy_v3_v3(r_vec, normal);
}
else {
negate_v3_v3(r_vec, normal);
}
}
else if (culling && (dot_v3v3(r_vec, normal) < 0.0f)) {
return FLT_MAX;
}
return dist;
}
// w3 is not perfect
static void collision_compute_barycentric(const float pv[3],
const float p1[3],
const float p2[3],
const float p3[3],
float *w1,
float *w2,
float *w3)
{
/* dot_v3v3 */
#define INPR(v1, v2) ((v1)[0] * (v2)[0] + (v1)[1] * (v2)[1] + (v1)[2] * (v2)[2])
double tempV1[3], tempV2[3], tempV4[3];
double a, b, c, d, e, f;
sub_v3db_v3fl_v3fl(tempV1, p1, p3);
sub_v3db_v3fl_v3fl(tempV2, p2, p3);
sub_v3db_v3fl_v3fl(tempV4, pv, p3);
a = INPR(tempV1, tempV1);
b = INPR(tempV1, tempV2);
c = INPR(tempV2, tempV2);
e = INPR(tempV1, tempV4);
f = INPR(tempV2, tempV4);
d = (a * c - b * b);
if (fabs(d) < (double)ALMOST_ZERO) {
*w1 = *w2 = *w3 = 1.0 / 3.0;
return;
}
w1[0] = (float)((e * c - b * f) / d);
if (w1[0] < 0) {
w1[0] = 0;
}
w2[0] = (float)((f - b * (double)w1[0]) / c);
if (w2[0] < 0) {
w2[0] = 0;
}
w3[0] = 1.0f - w1[0] - w2[0];
#undef INPR
}
#ifdef __GNUC__
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wdouble-promotion"
#endif
DO_INLINE void collision_interpolateOnTriangle(float to[3],
const float v1[3],
const float v2[3],
const float v3[3],
const double w1,
const double w2,
const double w3)
{
zero_v3(to);
VECADDMUL(to, v1, w1);
VECADDMUL(to, v2, w2);
VECADDMUL(to, v3, w3);
}
static void cloth_collision_impulse_vert(const float clamp_sq,
const float impulse[3],
struct ClothVertex *vert)
{
float impulse_len_sq = len_squared_v3(impulse);
if ((clamp_sq > 0.0f) && (impulse_len_sq > clamp_sq)) {
return;
}
if (fabsf(vert->impulse[0]) < fabsf(impulse[0])) {
vert->impulse[0] = impulse[0];
}
if (fabsf(vert->impulse[1]) < fabsf(impulse[1])) {
vert->impulse[1] = impulse[1];
}
if (fabsf(vert->impulse[2]) < fabsf(impulse[2])) {
vert->impulse[2] = impulse[2];
}
vert->impulse_count++;
}
static int cloth_collision_response_static(ClothModifierData *clmd,
CollisionModifierData *collmd,
Object *collob,
CollPair *collpair,
uint collision_count,
const float dt)
{
int result = 0;
Cloth *cloth = clmd->clothObject;
const float clamp_sq = square_f(clmd->coll_parms->clamp * dt);
2020-08-12 17:57:26 -03:00
const float time_multiplier = 1.0f / (clmd->sim_parms->dt * clmd->sim_parms->timescale);
const float epsilon2 = BLI_bvhtree_get_epsilon(collmd->bvhtree);
const float min_distance = (clmd->coll_parms->epsilon + epsilon2) * (8.0f / 9.0f);
2020-08-12 17:57:26 -03:00
const bool is_hair = (clmd->hairdata != NULL);
for (int i = 0; i < collision_count; i++, collpair++) {
2020-08-12 17:57:26 -03:00
float i1[3], i2[3], i3[3];
float w1, w2, w3, u1, u2, u3;
float v1[3], v2[3], relativeVelocity[3];
zero_v3(i1);
zero_v3(i2);
zero_v3(i3);
/* Only handle static collisions here. */
if (collpair->flag & (COLLISION_IN_FUTURE | COLLISION_INACTIVE)) {
continue;
}
/* Compute barycentric coordinates and relative "velocity" for both collision points. */
if (is_hair) {
w2 = line_point_factor_v3(
collpair->pa, cloth->verts[collpair->ap1].tx, cloth->verts[collpair->ap2].tx);
w1 = 1.0f - w2;
interp_v3_v3v3(v1, cloth->verts[collpair->ap1].tv, cloth->verts[collpair->ap2].tv, w2);
}
else {
collision_compute_barycentric(collpair->pa,
cloth->verts[collpair->ap1].tx,
cloth->verts[collpair->ap2].tx,
cloth->verts[collpair->ap3].tx,
&w1,
&w2,
&w3);
collision_interpolateOnTriangle(v1,
cloth->verts[collpair->ap1].tv,
cloth->verts[collpair->ap2].tv,
cloth->verts[collpair->ap3].tv,
w1,
w2,
w3);
}
collision_compute_barycentric(collpair->pb,
collmd->current_xnew[collpair->bp1].co,
collmd->current_xnew[collpair->bp2].co,
collmd->current_xnew[collpair->bp3].co,
&u1,
&u2,
&u3);
collision_interpolateOnTriangle(v2,
collmd->current_v[collpair->bp1].co,
collmd->current_v[collpair->bp2].co,
collmd->current_v[collpair->bp3].co,
u1,
u2,
u3);
sub_v3_v3v3(relativeVelocity, v2, v1);
/* Calculate the normal component of the relative velocity
* (actually only the magnitude - the direction is stored in 'normal'). */
const float magrelVel = dot_v3v3(relativeVelocity, collpair->normal);
2020-08-12 17:57:26 -03:00
const float d = min_distance - collpair->distance;
/* If magrelVel < 0 the edges are approaching each other. */
if (magrelVel > 0.0f) {
/* Calculate Impulse magnitude to stop all motion in normal direction. */
float magtangent = 0, repulse = 0;
double impulse = 0.0;
float vrel_t_pre[3];
float temp[3];
/* Calculate tangential velocity. */
copy_v3_v3(temp, collpair->normal);
mul_v3_fl(temp, magrelVel);
sub_v3_v3v3(vrel_t_pre, relativeVelocity, temp);
/* Decrease in magnitude of relative tangential velocity due to coulomb friction
* in original formula "magrelVel" should be the
* "change of relative velocity in normal direction". */
magtangent = min_ff(collob->pd->pdef_cfrict * 0.01f * magrelVel, len_v3(vrel_t_pre));
/* Apply friction impulse. */
if (magtangent > ALMOST_ZERO) {
normalize_v3(vrel_t_pre);
impulse = magtangent / 1.5;
VECADDMUL(i1, vrel_t_pre, (double)w1 * impulse);
VECADDMUL(i2, vrel_t_pre, (double)w2 * impulse);
if (!is_hair) {
VECADDMUL(i3, vrel_t_pre, (double)w3 * impulse);
}
}
/* Apply velocity stopping impulse. */
impulse = magrelVel / 1.5f;
VECADDMUL(i1, collpair->normal, (double)w1 * impulse);
VECADDMUL(i2, collpair->normal, (double)w2 * impulse);
if (!is_hair) {
VECADDMUL(i3, collpair->normal, (double)w3 * impulse);
}
if ((magrelVel < 0.1f * d * time_multiplier) && (d > ALMOST_ZERO)) {
repulse = MIN2(d / time_multiplier, 0.1f * d * time_multiplier - magrelVel);
/* Stay on the safe side and clamp repulse. */
if (impulse > ALMOST_ZERO) {
repulse = min_ff(repulse, 5.0f * impulse);
}
repulse = max_ff(impulse, repulse);
impulse = repulse / 1.5f;
VECADDMUL(i1, collpair->normal, impulse);
VECADDMUL(i2, collpair->normal, impulse);
if (!is_hair) {
VECADDMUL(i3, collpair->normal, impulse);
}
}
result = 1;
}
else if (d > ALMOST_ZERO) {
/* Stay on the safe side and clamp repulse. */
float repulse = d / time_multiplier;
float impulse = repulse / 4.5f;
VECADDMUL(i1, collpair->normal, w1 * impulse);
VECADDMUL(i2, collpair->normal, w2 * impulse);
if (!is_hair) {
VECADDMUL(i3, collpair->normal, w3 * impulse);
}
result = 1;
}
if (result) {
cloth_collision_impulse_vert(clamp_sq, i1, &cloth->verts[collpair->ap1]);
cloth_collision_impulse_vert(clamp_sq, i2, &cloth->verts[collpair->ap2]);
if (!is_hair) {
cloth_collision_impulse_vert(clamp_sq, i3, &cloth->verts[collpair->ap3]);
}
}
}
return result;
}
static int cloth_selfcollision_response_static(ClothModifierData *clmd,
CollPair *collpair,
uint collision_count,
const float dt)
{
int result = 0;
Cloth *cloth = clmd->clothObject;
2020-08-12 17:57:26 -03:00
const float clamp_sq = square_f(clmd->coll_parms->self_clamp * dt);
const float time_multiplier = 1.0f / (clmd->sim_parms->dt * clmd->sim_parms->timescale);
const float min_distance = (2.0f * clmd->coll_parms->selfepsilon) * (8.0f / 9.0f);
for (int i = 0; i < collision_count; i++, collpair++) {
float ia[3][3] = {{0.0f}};
float ib[3][3] = {{0.0f}};
float w1, w2, w3, u1, u2, u3;
float v1[3], v2[3], relativeVelocity[3];
/* Only handle static collisions here. */
if (collpair->flag & (COLLISION_IN_FUTURE | COLLISION_INACTIVE)) {
continue;
}
/* Compute barycentric coordinates for both collision points. */
collision_compute_barycentric(collpair->pa,
cloth->verts[collpair->ap1].tx,
cloth->verts[collpair->ap2].tx,
cloth->verts[collpair->ap3].tx,
&w1,
&w2,
&w3);
collision_compute_barycentric(collpair->pb,
cloth->verts[collpair->bp1].tx,
cloth->verts[collpair->bp2].tx,
cloth->verts[collpair->bp3].tx,
&u1,
&u2,
&u3);
/* Calculate relative "velocity". */
collision_interpolateOnTriangle(v1,
cloth->verts[collpair->ap1].tv,
cloth->verts[collpair->ap2].tv,
cloth->verts[collpair->ap3].tv,
w1,
w2,
w3);
collision_interpolateOnTriangle(v2,
cloth->verts[collpair->bp1].tv,
cloth->verts[collpair->bp2].tv,
cloth->verts[collpair->bp3].tv,
u1,
u2,
u3);
sub_v3_v3v3(relativeVelocity, v2, v1);
/* Calculate the normal component of the relative velocity
* (actually only the magnitude - the direction is stored in 'normal'). */
const float magrelVel = dot_v3v3(relativeVelocity, collpair->normal);
2020-08-12 17:57:26 -03:00
const float d = min_distance - collpair->distance;
/* TODO: Impulses should be weighed by mass as this is self col,
* this has to be done after mass distribution is implemented. */
/* If magrelVel < 0 the edges are approaching each other. */
if (magrelVel > 0.0f) {
/* Calculate Impulse magnitude to stop all motion in normal direction. */
float magtangent = 0, repulse = 0;
double impulse = 0.0;
float vrel_t_pre[3];
float temp[3];
/* Calculate tangential velocity. */
copy_v3_v3(temp, collpair->normal);
mul_v3_fl(temp, magrelVel);
sub_v3_v3v3(vrel_t_pre, relativeVelocity, temp);
/* Decrease in magnitude of relative tangential velocity due to coulomb friction
* in original formula "magrelVel" should be the
* "change of relative velocity in normal direction". */
magtangent = min_ff(clmd->coll_parms->self_friction * 0.01f * magrelVel, len_v3(vrel_t_pre));
/* Apply friction impulse. */
if (magtangent > ALMOST_ZERO) {
normalize_v3(vrel_t_pre);
impulse = magtangent / 1.5;
VECADDMUL(ia[0], vrel_t_pre, (double)w1 * impulse);
VECADDMUL(ia[1], vrel_t_pre, (double)w2 * impulse);
VECADDMUL(ia[2], vrel_t_pre, (double)w3 * impulse);
VECADDMUL(ib[0], vrel_t_pre, (double)u1 * -impulse);
VECADDMUL(ib[1], vrel_t_pre, (double)u2 * -impulse);
VECADDMUL(ib[2], vrel_t_pre, (double)u3 * -impulse);
}
/* Apply velocity stopping impulse. */
impulse = magrelVel / 3.0f;
VECADDMUL(ia[0], collpair->normal, (double)w1 * impulse);
VECADDMUL(ia[1], collpair->normal, (double)w2 * impulse);
VECADDMUL(ia[2], collpair->normal, (double)w3 * impulse);
VECADDMUL(ib[0], collpair->normal, (double)u1 * -impulse);
VECADDMUL(ib[1], collpair->normal, (double)u2 * -impulse);
VECADDMUL(ib[2], collpair->normal, (double)u3 * -impulse);
if ((magrelVel < 0.1f * d * time_multiplier) && (d > ALMOST_ZERO)) {
repulse = MIN2(d / time_multiplier, 0.1f * d * time_multiplier - magrelVel);
if (impulse > ALMOST_ZERO) {
repulse = min_ff(repulse, 5.0 * impulse);
}
repulse = max_ff(impulse, repulse);
impulse = repulse / 1.5f;
VECADDMUL(ia[0], collpair->normal, (double)w1 * impulse);
VECADDMUL(ia[1], collpair->normal, (double)w2 * impulse);
VECADDMUL(ia[2], collpair->normal, (double)w3 * impulse);
VECADDMUL(ib[0], collpair->normal, (double)u1 * -impulse);
VECADDMUL(ib[1], collpair->normal, (double)u2 * -impulse);
VECADDMUL(ib[2], collpair->normal, (double)u3 * -impulse);
}
result = 1;
}
else if (d > ALMOST_ZERO) {
/* Stay on the safe side and clamp repulse. */
float repulse = d * 1.0f / time_multiplier;
float impulse = repulse / 9.0f;
VECADDMUL(ia[0], collpair->normal, w1 * impulse);
VECADDMUL(ia[1], collpair->normal, w2 * impulse);
VECADDMUL(ia[2], collpair->normal, w3 * impulse);
VECADDMUL(ib[0], collpair->normal, u1 * -impulse);
VECADDMUL(ib[1], collpair->normal, u2 * -impulse);
VECADDMUL(ib[2], collpair->normal, u3 * -impulse);
result = 1;
}
if (result) {
cloth_collision_impulse_vert(clamp_sq, ia[0], &cloth->verts[collpair->ap1]);
cloth_collision_impulse_vert(clamp_sq, ia[1], &cloth->verts[collpair->ap2]);
cloth_collision_impulse_vert(clamp_sq, ia[2], &cloth->verts[collpair->ap3]);
cloth_collision_impulse_vert(clamp_sq, ib[0], &cloth->verts[collpair->bp1]);
cloth_collision_impulse_vert(clamp_sq, ib[1], &cloth->verts[collpair->bp2]);
cloth_collision_impulse_vert(clamp_sq, ib[2], &cloth->verts[collpair->bp3]);
}
}
return result;
}
#ifdef __GNUC__
# pragma GCC diagnostic pop
#endif
static void cloth_collision(void *__restrict userdata,
const int index,
const TaskParallelTLS *__restrict UNUSED(tls))
{
ColDetectData *data = (ColDetectData *)userdata;
ClothModifierData *clmd = data->clmd;
CollisionModifierData *collmd = data->collmd;
CollPair *collpair = data->collisions;
const MVertTri *tri_a, *tri_b;
ClothVertex *verts1 = clmd->clothObject->verts;
float distance = 0.0f;
float epsilon1 = clmd->coll_parms->epsilon;
float epsilon2 = BLI_bvhtree_get_epsilon(collmd->bvhtree);
float pa[3], pb[3], vect[3];
tri_a = &clmd->clothObject->tri[data->overlap[index].indexA];
tri_b = &collmd->tri[data->overlap[index].indexB];
/* Compute distance and normal. */
distance = compute_collision_point_tri_tri(verts1[tri_a->tri[0]].tx,
verts1[tri_a->tri[1]].tx,
verts1[tri_a->tri[2]].tx,
collmd->current_xnew[tri_b->tri[0]].co,
collmd->current_xnew[tri_b->tri[1]].co,
collmd->current_xnew[tri_b->tri[2]].co,
data->culling,
data->use_normal,
pa,
pb,
vect);
if ((distance <= (epsilon1 + epsilon2 + ALMOST_ZERO)) && (len_squared_v3(vect) > ALMOST_ZERO)) {
collpair[index].ap1 = tri_a->tri[0];
collpair[index].ap2 = tri_a->tri[1];
collpair[index].ap3 = tri_a->tri[2];
collpair[index].bp1 = tri_b->tri[0];
collpair[index].bp2 = tri_b->tri[1];
collpair[index].bp3 = tri_b->tri[2];
copy_v3_v3(collpair[index].pa, pa);
copy_v3_v3(collpair[index].pb, pb);
copy_v3_v3(collpair[index].vector, vect);
normalize_v3_v3(collpair[index].normal, collpair[index].vector);
collpair[index].distance = distance;
collpair[index].flag = 0;
data->collided = true;
}
else {
collpair[index].flag = COLLISION_INACTIVE;
}
}
static bool cloth_bvh_selfcollision_is_active(const Cloth *cloth,
const MVertTri *tri_a,
const MVertTri *tri_b,
bool sewing_active)
{
const ClothVertex *verts = cloth->verts;
/* Ignore overlap of neighboring triangles and triangles connected by a sewing edge. */
for (uint i = 0; i < 3; i++) {
for (uint j = 0; j < 3; j++) {
if (tri_a->tri[i] == tri_b->tri[j]) {
return false;
}
if (sewing_active) {
if (BLI_edgeset_haskey(cloth->sew_edge_graph, tri_a->tri[i], tri_b->tri[j])) {
return false;
}
}
}
}
if (((verts[tri_a->tri[0]].flags & verts[tri_a->tri[1]].flags & verts[tri_a->tri[2]].flags) |
(verts[tri_b->tri[0]].flags & verts[tri_b->tri[1]].flags & verts[tri_b->tri[2]].flags)) &
CLOTH_VERT_FLAG_NOSELFCOLL) {
return false;
}
return true;
}
static void cloth_selfcollision(void *__restrict userdata,
const int index,
const TaskParallelTLS *__restrict UNUSED(tls))
{
SelfColDetectData *data = (SelfColDetectData *)userdata;
ClothModifierData *clmd = data->clmd;
CollPair *collpair = data->collisions;
const MVertTri *tri_a, *tri_b;
ClothVertex *verts1 = clmd->clothObject->verts;
float distance = 0.0f;
float epsilon = clmd->coll_parms->selfepsilon;
float pa[3], pb[3], vect[3];
tri_a = &clmd->clothObject->tri[data->overlap[index].indexA];
tri_b = &clmd->clothObject->tri[data->overlap[index].indexB];
#ifdef DEBUG
bool sewing_active = (clmd->sim_parms->flags & CLOTH_SIMSETTINGS_FLAG_SEW);
BLI_assert(cloth_bvh_selfcollision_is_active(clmd->clothObject, tri_a, tri_b, sewing_active));
#endif
/* Compute distance and normal. */
distance = compute_collision_point_tri_tri(verts1[tri_a->tri[0]].tx,
verts1[tri_a->tri[1]].tx,
verts1[tri_a->tri[2]].tx,
verts1[tri_b->tri[0]].tx,
verts1[tri_b->tri[1]].tx,
verts1[tri_b->tri[2]].tx,
false,
false,
pa,
pb,
vect);
if ((distance <= (epsilon * 2.0f + ALMOST_ZERO)) && (len_squared_v3(vect) > ALMOST_ZERO)) {
collpair[index].ap1 = tri_a->tri[0];
collpair[index].ap2 = tri_a->tri[1];
collpair[index].ap3 = tri_a->tri[2];
collpair[index].bp1 = tri_b->tri[0];
collpair[index].bp2 = tri_b->tri[1];
collpair[index].bp3 = tri_b->tri[2];
copy_v3_v3(collpair[index].pa, pa);
copy_v3_v3(collpair[index].pb, pb);
copy_v3_v3(collpair[index].vector, vect);
normalize_v3_v3(collpair[index].normal, collpair[index].vector);
collpair[index].distance = distance;
collpair[index].flag = 0;
data->collided = true;
}
else {
collpair[index].flag = COLLISION_INACTIVE;
}
}
static void hair_collision(void *__restrict userdata,
const int index,
const TaskParallelTLS *__restrict UNUSED(tls))
{
ColDetectData *data = (ColDetectData *)userdata;
ClothModifierData *clmd = data->clmd;
CollisionModifierData *collmd = data->collmd;
CollPair *collpair = data->collisions;
const MVertTri *tri_coll;
const MEdge *edge_coll;
ClothVertex *verts1 = clmd->clothObject->verts;
float distance = 0.0f;
float epsilon1 = clmd->coll_parms->epsilon;
float epsilon2 = BLI_bvhtree_get_epsilon(collmd->bvhtree);
float pa[3], pb[3], vect[3];
/* TODO: This is not efficient. Might be wise to instead build an array before iterating, to
* avoid walking the list every time. */
edge_coll = &clmd->clothObject->edges[data->overlap[index].indexA];
tri_coll = &collmd->tri[data->overlap[index].indexB];
/* Compute distance and normal. */
distance = compute_collision_point_edge_tri(verts1[edge_coll->v1].tx,
verts1[edge_coll->v2].tx,
collmd->current_x[tri_coll->tri[0]].co,
collmd->current_x[tri_coll->tri[1]].co,
collmd->current_x[tri_coll->tri[2]].co,
data->culling,
data->use_normal,
pa,
pb,
vect);
if ((distance <= (epsilon1 + epsilon2 + ALMOST_ZERO)) && (len_squared_v3(vect) > ALMOST_ZERO)) {
collpair[index].ap1 = edge_coll->v1;
collpair[index].ap2 = edge_coll->v2;
collpair[index].bp1 = tri_coll->tri[0];
collpair[index].bp2 = tri_coll->tri[1];
collpair[index].bp3 = tri_coll->tri[2];
copy_v3_v3(collpair[index].pa, pa);
copy_v3_v3(collpair[index].pb, pb);
copy_v3_v3(collpair[index].vector, vect);
normalize_v3_v3(collpair[index].normal, collpair[index].vector);
collpair[index].distance = distance;
collpair[index].flag = 0;
data->collided = true;
}
else {
collpair[index].flag = COLLISION_INACTIVE;
}
}
static void add_collision_object(ListBase *relations,
Object *ob,
int level,
unsigned int modifier_type)
{
CollisionModifierData *cmd = NULL;
/* only get objects with collision modifier */
if (((modifier_type == eModifierType_Collision) && ob->pd && ob->pd->deflect) ||
(modifier_type != eModifierType_Collision)) {
cmd = (CollisionModifierData *)BKE_modifiers_findby_type(ob, modifier_type);
}
if (cmd) {
CollisionRelation *relation = MEM_callocN(sizeof(CollisionRelation), "CollisionRelation");
relation->ob = ob;
BLI_addtail(relations, relation);
}
/* objects in dupli groups, one level only for now */
/* TODO: this doesn't really work, we are not taking into account the
* dupli transforms and can get objects in the list multiple times. */
if (ob->instance_collection && level == 0) {
Collection *collection = ob->instance_collection;
/* add objects */
FOREACH_COLLECTION_OBJECT_RECURSIVE_BEGIN (collection, object) {
add_collision_object(relations, object, level + 1, modifier_type);
}
FOREACH_COLLECTION_OBJECT_RECURSIVE_END;
}
}
/* Create list of collision relations in the collection or entire scene.
* This is used by the depsgraph to build relations, as well as faster
* lookup of colliders during evaluation. */
ListBase *BKE_collision_relations_create(Depsgraph *depsgraph,
Collection *collection,
unsigned int modifier_type)
{
ViewLayer *view_layer = DEG_get_input_view_layer(depsgraph);
Base *base = BKE_collection_or_layer_objects(view_layer, collection);
const bool for_render = (DEG_get_mode(depsgraph) == DAG_EVAL_RENDER);
const int base_flag = (for_render) ? BASE_ENABLED_RENDER : BASE_ENABLED_VIEWPORT;
ListBase *relations = MEM_callocN(sizeof(ListBase), "CollisionRelation list");
for (; base; base = base->next) {
if (base->flag & base_flag) {
add_collision_object(relations, base->object, 0, modifier_type);
}
}
return relations;
}
void BKE_collision_relations_free(ListBase *relations)
Fix depsgraph to compute more accurate links for collision & force. Current implementation more or less indiscriminately links physics objects to colliders and forces, ignoring precise details of layer checks and collider groups. The new depsgraph seemed to lack some such links at all. The relevant code in modifiers suffers from a lot of duplication. Different physics simulations use independent implementations of collision and similar things, which results in a lot of variance: * Cloth collides with objects on same or visible layer with dupli. * Softbody collides with objects on same layer without dupli. * Non-hair particles collide on same layer with dupli. * Smoke uses same code as cloth, but needs different modifier. * Dynamic paint "collides" with brushes on any layer without dupli. Force fields with absorption also imply dependency on colliders: * For most systems, colliders are selected from same layer as field. * For non-hair particles, it uses the same exact set as the particles. As a special quirk, smoke ignores smoke flow force fields; on the other hand dependency on such field implies dependency on the smoke domain. This introduces two utility functions each for old and new depsgraph that are flexible enough to handle all these variations, and uses them to handle particles, cloth, smoke, softbody and dynpaint. One thing to watch out for is that depsgraph code shouldn't rely on any properties that don't cause a graph rebuild when changed. This was violated in the original code that was building force field links, while taking zero field weights into account. This change may cause new dependency cycles in cases where necessary dependencies were missing, but may also remove cycles in situations where unnecessary links were previously created. It's also now possible to solve some cycles by switching to explicit groups, since they are now properly taken into account for dependencies. Differential Revision: https://developer.blender.org/D2141
2016-08-12 18:23:29 +03:00
{
if (relations) {
BLI_freelistN(relations);
MEM_freeN(relations);
}
Fix depsgraph to compute more accurate links for collision & force. Current implementation more or less indiscriminately links physics objects to colliders and forces, ignoring precise details of layer checks and collider groups. The new depsgraph seemed to lack some such links at all. The relevant code in modifiers suffers from a lot of duplication. Different physics simulations use independent implementations of collision and similar things, which results in a lot of variance: * Cloth collides with objects on same or visible layer with dupli. * Softbody collides with objects on same layer without dupli. * Non-hair particles collide on same layer with dupli. * Smoke uses same code as cloth, but needs different modifier. * Dynamic paint "collides" with brushes on any layer without dupli. Force fields with absorption also imply dependency on colliders: * For most systems, colliders are selected from same layer as field. * For non-hair particles, it uses the same exact set as the particles. As a special quirk, smoke ignores smoke flow force fields; on the other hand dependency on such field implies dependency on the smoke domain. This introduces two utility functions each for old and new depsgraph that are flexible enough to handle all these variations, and uses them to handle particles, cloth, smoke, softbody and dynpaint. One thing to watch out for is that depsgraph code shouldn't rely on any properties that don't cause a graph rebuild when changed. This was violated in the original code that was building force field links, while taking zero field weights into account. This change may cause new dependency cycles in cases where necessary dependencies were missing, but may also remove cycles in situations where unnecessary links were previously created. It's also now possible to solve some cycles by switching to explicit groups, since they are now properly taken into account for dependencies. Differential Revision: https://developer.blender.org/D2141
2016-08-12 18:23:29 +03:00
}
/* Create effective list of colliders from relations built beforehand.
* Self will be excluded. */
Object **BKE_collision_objects_create(Depsgraph *depsgraph,
Object *self,
Collection *collection,
unsigned int *numcollobj,
unsigned int modifier_type)
Unified effector functionality for particles, cloth and softbody * Unified scene wide gravity (currently in scene buttons) instead of each simulation having it's own gravity. * Weight parameters for all effectors and an effector group setting. * Every effector can use noise. * Most effectors have "shapes" point, plane, surface, every point. - "Point" is most like the old effectors and uses the effector location as the effector point. - "Plane" uses the closest point on effectors local xy-plane as the effector point. - "Surface" uses the closest point on an effector object's surface as the effector point. - "Every Point" uses every point in a mesh effector object as an effector point. - The falloff is calculated from this point, so for example with "surface" shape and "use only negative z axis" it's possible to apply force only "inside" the effector object. * Spherical effector is now renamed as "force" as it's no longer just spherical. * New effector parameter "flow", which makes the effector act as surrounding air velocity, so the resulting force is proportional to the velocity difference of the point and "air velocity". For example a wind field with flow=1.0 results in proper non-accelerating wind. * New effector fields "turbulence", which creates nice random flow paths, and "drag", which slows the points down. * Much improved vortex field. * Effectors can now effect particle rotation as well as location. * Use full, or only positive/negative z-axis to apply force (note. the z-axis is the surface normal in the case of effector shape "surface") * New "force field" submenu in add menu, which adds an empty with the chosen effector (curve object for corve guides). * Other dynamics should be quite easy to add to the effector system too if wanted. * "Unified" doesn't mean that force fields give the exact same results for particles, softbody & cloth, since their final effect depends on many external factors, like for example the surface area of the effected faces. Code changes * Subversion bump for correct handling of global gravity. * Separate ui py file for common dynamics stuff. * Particle settings updating is flushed with it's id through DAG_id_flush_update(..). Known issues * Curve guides don't yet have all ui buttons in place, but they should work none the less. * Hair dynamics don't yet respect force fields. Other changes * Particle emission defaults now to frames 1-200 with life of 50 frames to fill the whole default timeline. * Many particles drawing related crashes fixed. * Sometimes particles didn't update on first frame properly. * Hair with object/group visualization didn't work properly. * Memory leaks with PointCacheID lists (Genscher, remember to free pidlists after use :).
2009-09-30 22:10:14 +00:00
{
ListBase *relations = DEG_get_collision_relations(depsgraph, collection, modifier_type);
if (!relations) {
*numcollobj = 0;
return NULL;
}
int maxnum = BLI_listbase_count(relations);
int num = 0;
Object **objects = MEM_callocN(sizeof(Object *) * maxnum, __func__);
LISTBASE_FOREACH (CollisionRelation *, relation, relations) {
/* Get evaluated object. */
Object *ob = (Object *)DEG_get_evaluated_id(depsgraph, &relation->ob->id);
if (ob != self) {
objects[num] = ob;
num++;
}
}
if (num == 0) {
MEM_freeN(objects);
objects = NULL;
}
*numcollobj = num;
return objects;
}
void BKE_collision_objects_free(Object **objects)
{
if (objects) {
MEM_freeN(objects);
}
}
/* Create effective list of colliders from relations built beforehand.
* Self will be excluded. */
ListBase *BKE_collider_cache_create(Depsgraph *depsgraph, Object *self, Collection *collection)
{
ListBase *relations = DEG_get_collision_relations(
depsgraph, collection, eModifierType_Collision);
ListBase *cache = NULL;
if (!relations) {
return NULL;
}
LISTBASE_FOREACH (CollisionRelation *, relation, relations) {
/* Get evaluated object. */
Object *ob = (Object *)DEG_get_evaluated_id(depsgraph, &relation->ob->id);
if (ob == self) {
continue;
}
CollisionModifierData *cmd = (CollisionModifierData *)BKE_modifiers_findby_type(
ob, eModifierType_Collision);
if (cmd && cmd->bvhtree) {
if (cache == NULL) {
cache = MEM_callocN(sizeof(ListBase), "ColliderCache array");
}
ColliderCache *col = MEM_callocN(sizeof(ColliderCache), "ColliderCache");
col->ob = ob;
col->collmd = cmd;
/* make sure collider is properly set up */
collision_move_object(cmd, 1.0, 0.0, true);
BLI_addtail(cache, col);
}
}
return cache;
Unified effector functionality for particles, cloth and softbody * Unified scene wide gravity (currently in scene buttons) instead of each simulation having it's own gravity. * Weight parameters for all effectors and an effector group setting. * Every effector can use noise. * Most effectors have "shapes" point, plane, surface, every point. - "Point" is most like the old effectors and uses the effector location as the effector point. - "Plane" uses the closest point on effectors local xy-plane as the effector point. - "Surface" uses the closest point on an effector object's surface as the effector point. - "Every Point" uses every point in a mesh effector object as an effector point. - The falloff is calculated from this point, so for example with "surface" shape and "use only negative z axis" it's possible to apply force only "inside" the effector object. * Spherical effector is now renamed as "force" as it's no longer just spherical. * New effector parameter "flow", which makes the effector act as surrounding air velocity, so the resulting force is proportional to the velocity difference of the point and "air velocity". For example a wind field with flow=1.0 results in proper non-accelerating wind. * New effector fields "turbulence", which creates nice random flow paths, and "drag", which slows the points down. * Much improved vortex field. * Effectors can now effect particle rotation as well as location. * Use full, or only positive/negative z-axis to apply force (note. the z-axis is the surface normal in the case of effector shape "surface") * New "force field" submenu in add menu, which adds an empty with the chosen effector (curve object for corve guides). * Other dynamics should be quite easy to add to the effector system too if wanted. * "Unified" doesn't mean that force fields give the exact same results for particles, softbody & cloth, since their final effect depends on many external factors, like for example the surface area of the effected faces. Code changes * Subversion bump for correct handling of global gravity. * Separate ui py file for common dynamics stuff. * Particle settings updating is flushed with it's id through DAG_id_flush_update(..). Known issues * Curve guides don't yet have all ui buttons in place, but they should work none the less. * Hair dynamics don't yet respect force fields. Other changes * Particle emission defaults now to frames 1-200 with life of 50 frames to fill the whole default timeline. * Many particles drawing related crashes fixed. * Sometimes particles didn't update on first frame properly. * Hair with object/group visualization didn't work properly. * Memory leaks with PointCacheID lists (Genscher, remember to free pidlists after use :).
2009-09-30 22:10:14 +00:00
}
void BKE_collider_cache_free(ListBase **colliders)
Unified effector functionality for particles, cloth and softbody * Unified scene wide gravity (currently in scene buttons) instead of each simulation having it's own gravity. * Weight parameters for all effectors and an effector group setting. * Every effector can use noise. * Most effectors have "shapes" point, plane, surface, every point. - "Point" is most like the old effectors and uses the effector location as the effector point. - "Plane" uses the closest point on effectors local xy-plane as the effector point. - "Surface" uses the closest point on an effector object's surface as the effector point. - "Every Point" uses every point in a mesh effector object as an effector point. - The falloff is calculated from this point, so for example with "surface" shape and "use only negative z axis" it's possible to apply force only "inside" the effector object. * Spherical effector is now renamed as "force" as it's no longer just spherical. * New effector parameter "flow", which makes the effector act as surrounding air velocity, so the resulting force is proportional to the velocity difference of the point and "air velocity". For example a wind field with flow=1.0 results in proper non-accelerating wind. * New effector fields "turbulence", which creates nice random flow paths, and "drag", which slows the points down. * Much improved vortex field. * Effectors can now effect particle rotation as well as location. * Use full, or only positive/negative z-axis to apply force (note. the z-axis is the surface normal in the case of effector shape "surface") * New "force field" submenu in add menu, which adds an empty with the chosen effector (curve object for corve guides). * Other dynamics should be quite easy to add to the effector system too if wanted. * "Unified" doesn't mean that force fields give the exact same results for particles, softbody & cloth, since their final effect depends on many external factors, like for example the surface area of the effected faces. Code changes * Subversion bump for correct handling of global gravity. * Separate ui py file for common dynamics stuff. * Particle settings updating is flushed with it's id through DAG_id_flush_update(..). Known issues * Curve guides don't yet have all ui buttons in place, but they should work none the less. * Hair dynamics don't yet respect force fields. Other changes * Particle emission defaults now to frames 1-200 with life of 50 frames to fill the whole default timeline. * Many particles drawing related crashes fixed. * Sometimes particles didn't update on first frame properly. * Hair with object/group visualization didn't work properly. * Memory leaks with PointCacheID lists (Genscher, remember to free pidlists after use :).
2009-09-30 22:10:14 +00:00
{
if (*colliders) {
BLI_freelistN(*colliders);
MEM_freeN(*colliders);
*colliders = NULL;
}
Unified effector functionality for particles, cloth and softbody * Unified scene wide gravity (currently in scene buttons) instead of each simulation having it's own gravity. * Weight parameters for all effectors and an effector group setting. * Every effector can use noise. * Most effectors have "shapes" point, plane, surface, every point. - "Point" is most like the old effectors and uses the effector location as the effector point. - "Plane" uses the closest point on effectors local xy-plane as the effector point. - "Surface" uses the closest point on an effector object's surface as the effector point. - "Every Point" uses every point in a mesh effector object as an effector point. - The falloff is calculated from this point, so for example with "surface" shape and "use only negative z axis" it's possible to apply force only "inside" the effector object. * Spherical effector is now renamed as "force" as it's no longer just spherical. * New effector parameter "flow", which makes the effector act as surrounding air velocity, so the resulting force is proportional to the velocity difference of the point and "air velocity". For example a wind field with flow=1.0 results in proper non-accelerating wind. * New effector fields "turbulence", which creates nice random flow paths, and "drag", which slows the points down. * Much improved vortex field. * Effectors can now effect particle rotation as well as location. * Use full, or only positive/negative z-axis to apply force (note. the z-axis is the surface normal in the case of effector shape "surface") * New "force field" submenu in add menu, which adds an empty with the chosen effector (curve object for corve guides). * Other dynamics should be quite easy to add to the effector system too if wanted. * "Unified" doesn't mean that force fields give the exact same results for particles, softbody & cloth, since their final effect depends on many external factors, like for example the surface area of the effected faces. Code changes * Subversion bump for correct handling of global gravity. * Separate ui py file for common dynamics stuff. * Particle settings updating is flushed with it's id through DAG_id_flush_update(..). Known issues * Curve guides don't yet have all ui buttons in place, but they should work none the less. * Hair dynamics don't yet respect force fields. Other changes * Particle emission defaults now to frames 1-200 with life of 50 frames to fill the whole default timeline. * Many particles drawing related crashes fixed. * Sometimes particles didn't update on first frame properly. * Hair with object/group visualization didn't work properly. * Memory leaks with PointCacheID lists (Genscher, remember to free pidlists after use :).
2009-09-30 22:10:14 +00:00
}
static bool cloth_bvh_objcollisions_nearcheck(ClothModifierData *clmd,
CollisionModifierData *collmd,
CollPair **collisions,
int numresult,
BVHTreeOverlap *overlap,
bool culling,
bool use_normal)
{
const bool is_hair = (clmd->hairdata != NULL);
*collisions = (CollPair *)MEM_mallocN(sizeof(CollPair) * numresult, "collision array");
ColDetectData data = {
.clmd = clmd,
.collmd = collmd,
.overlap = overlap,
.collisions = *collisions,
.culling = culling,
.use_normal = use_normal,
.collided = false,
};
TaskParallelSettings settings;
BLI_parallel_range_settings_defaults(&settings);
settings.use_threading = true;
BLI_task_parallel_range(
0, numresult, &data, is_hair ? hair_collision : cloth_collision, &settings);
return data.collided;
}
static bool cloth_bvh_selfcollisions_nearcheck(ClothModifierData *clmd,
CollPair *collisions,
int numresult,
BVHTreeOverlap *overlap)
{
SelfColDetectData data = {
.clmd = clmd,
.overlap = overlap,
.collisions = collisions,
.collided = false,
};
TaskParallelSettings settings;
BLI_parallel_range_settings_defaults(&settings);
settings.use_threading = true;
BLI_task_parallel_range(0, numresult, &data, cloth_selfcollision, &settings);
return data.collided;
}
static int cloth_bvh_objcollisions_resolve(ClothModifierData *clmd,
Object **collobjs,
CollPair **collisions,
uint *collision_counts,
const uint numcollobj,
const float dt)
{
Cloth *cloth = clmd->clothObject;
int i = 0, j = 0, mvert_num = 0;
ClothVertex *verts = NULL;
int ret = 0;
int result = 0;
mvert_num = clmd->clothObject->mvert_num;
verts = cloth->verts;
result = 1;
for (j = 0; j < 2; j++) {
result = 0;
for (i = 0; i < numcollobj; i++) {
Object *collob = collobjs[i];
CollisionModifierData *collmd = (CollisionModifierData *)BKE_modifiers_findby_type(
collob, eModifierType_Collision);
if (collmd->bvhtree) {
result += cloth_collision_response_static(
clmd, collmd, collob, collisions[i], collision_counts[i], dt);
}
}
/* Apply impulses in parallel. */
if (result) {
for (i = 0; i < mvert_num; i++) {
// calculate "velocities" (just xnew = xold + v; no dt in v)
if (verts[i].impulse_count) {
add_v3_v3(verts[i].tv, verts[i].impulse);
add_v3_v3(verts[i].dcvel, verts[i].impulse);
zero_v3(verts[i].impulse);
verts[i].impulse_count = 0;
ret++;
}
}
}
else {
break;
}
}
return ret;
}
static int cloth_bvh_selfcollisions_resolve(ClothModifierData *clmd,
CollPair *collisions,
int collision_count,
const float dt)
{
Cloth *cloth = clmd->clothObject;
int i = 0, j = 0, mvert_num = 0;
ClothVertex *verts = NULL;
int ret = 0;
int result = 0;
mvert_num = clmd->clothObject->mvert_num;
verts = cloth->verts;
for (j = 0; j < 2; j++) {
result = 0;
result += cloth_selfcollision_response_static(clmd, collisions, collision_count, dt);
/* Apply impulses in parallel. */
if (result) {
for (i = 0; i < mvert_num; i++) {
if (verts[i].impulse_count) {
// VECADDMUL ( verts[i].tv, verts[i].impulse, 1.0f / verts[i].impulse_count );
add_v3_v3(verts[i].tv, verts[i].impulse);
add_v3_v3(verts[i].dcvel, verts[i].impulse);
zero_v3(verts[i].impulse);
verts[i].impulse_count = 0;
ret++;
}
}
}
if (!result) {
break;
}
}
return ret;
}
static bool cloth_bvh_self_overlap_cb(void *userdata, int index_a, int index_b, int UNUSED(thread))
{
/* No need for equal combinations (eg. (0,1) & (1,0)). */
if (index_a < index_b) {
ClothModifierData *clmd = (ClothModifierData *)userdata;
struct Cloth *clothObject = clmd->clothObject;
const MVertTri *tri_a, *tri_b;
tri_a = &clothObject->tri[index_a];
tri_b = &clothObject->tri[index_b];
bool sewing_active = (clmd->sim_parms->flags & CLOTH_SIMSETTINGS_FLAG_SEW);
if (cloth_bvh_selfcollision_is_active(clothObject, tri_a, tri_b, sewing_active)) {
return true;
}
}
return false;
}
int cloth_bvh_collision(
Depsgraph *depsgraph, Object *ob, ClothModifierData *clmd, float step, float dt)
{
Cloth *cloth = clmd->clothObject;
BVHTree *cloth_bvh = cloth->bvhtree;
uint i = 0, mvert_num = 0;
int rounds = 0;
ClothVertex *verts = NULL;
int ret = 0, ret2 = 0;
Object **collobjs = NULL;
unsigned int numcollobj = 0;
uint *coll_counts_obj = NULL;
BVHTreeOverlap **overlap_obj = NULL;
uint coll_count_self = 0;
BVHTreeOverlap *overlap_self = NULL;
if ((clmd->sim_parms->flags & CLOTH_SIMSETTINGS_FLAG_COLLOBJ) || cloth_bvh == NULL) {
return 0;
}
verts = cloth->verts;
mvert_num = cloth->mvert_num;
if (clmd->coll_parms->flags & CLOTH_COLLSETTINGS_FLAG_ENABLED) {
bvhtree_update_from_cloth(clmd, false, false);
/* Enable self collision if this is a hair sim */
const bool is_hair = (clmd->hairdata != NULL);
collobjs = BKE_collision_objects_create(depsgraph,
is_hair ? NULL : ob,
clmd->coll_parms->group,
&numcollobj,
eModifierType_Collision);
if (collobjs) {
coll_counts_obj = MEM_callocN(sizeof(uint) * numcollobj, "CollCounts");
overlap_obj = MEM_callocN(sizeof(*overlap_obj) * numcollobj, "BVHOverlap");
for (i = 0; i < numcollobj; i++) {
Object *collob = collobjs[i];
CollisionModifierData *collmd = (CollisionModifierData *)BKE_modifiers_findby_type(
collob, eModifierType_Collision);
if (!collmd->bvhtree) {
continue;
}
/* Move object to position (step) in time. */
collision_move_object(collmd, step + dt, step, false);
overlap_obj[i] = BLI_bvhtree_overlap(
cloth_bvh, collmd->bvhtree, &coll_counts_obj[i], NULL, NULL);
}
}
}
if (clmd->coll_parms->flags & CLOTH_COLLSETTINGS_FLAG_SELF) {
bvhtree_update_from_cloth(clmd, false, true);
overlap_self = BLI_bvhtree_overlap(
cloth->bvhselftree, cloth->bvhselftree, &coll_count_self, cloth_bvh_self_overlap_cb, clmd);
}
do {
ret2 = 0;
/* Object collisions. */
if ((clmd->coll_parms->flags & CLOTH_COLLSETTINGS_FLAG_ENABLED) && collobjs) {
CollPair **collisions;
bool collided = false;
collisions = MEM_callocN(sizeof(CollPair *) * numcollobj, "CollPair");
for (i = 0; i < numcollobj; i++) {
Object *collob = collobjs[i];
CollisionModifierData *collmd = (CollisionModifierData *)BKE_modifiers_findby_type(
collob, eModifierType_Collision);
if (!collmd->bvhtree) {
continue;
}
if (coll_counts_obj[i] && overlap_obj[i]) {
collided = cloth_bvh_objcollisions_nearcheck(
clmd,
collmd,
&collisions[i],
coll_counts_obj[i],
overlap_obj[i],
(collob->pd->flag & PFIELD_CLOTH_USE_CULLING),
(collob->pd->flag & PFIELD_CLOTH_USE_NORMAL)) ||
collided;
}
}
if (collided) {
ret += cloth_bvh_objcollisions_resolve(
clmd, collobjs, collisions, coll_counts_obj, numcollobj, dt);
ret2 += ret;
}
for (i = 0; i < numcollobj; i++) {
MEM_SAFE_FREE(collisions[i]);
}
MEM_freeN(collisions);
}
/* Self collisions. */
if (clmd->coll_parms->flags & CLOTH_COLLSETTINGS_FLAG_SELF) {
CollPair *collisions = NULL;
verts = cloth->verts;
mvert_num = cloth->mvert_num;
if (cloth->bvhselftree) {
if (coll_count_self && overlap_self) {
collisions = (CollPair *)MEM_mallocN(sizeof(CollPair) * coll_count_self,
"collision array");
if (cloth_bvh_selfcollisions_nearcheck(
clmd, collisions, coll_count_self, overlap_self)) {
ret += cloth_bvh_selfcollisions_resolve(clmd, collisions, coll_count_self, dt);
ret2 += ret;
}
}
}
MEM_SAFE_FREE(collisions);
}
/* Apply all collision resolution. */
if (ret2) {
for (i = 0; i < mvert_num; i++) {
if (clmd->sim_parms->vgroup_mass > 0) {
if (verts[i].flags & CLOTH_VERT_FLAG_PINNED) {
continue;
}
}
add_v3_v3v3(verts[i].tx, verts[i].txold, verts[i].tv);
}
}
rounds++;
} while (ret2 && (clmd->coll_parms->loop_count > rounds));
if (overlap_obj) {
for (i = 0; i < numcollobj; i++) {
MEM_SAFE_FREE(overlap_obj[i]);
}
MEM_freeN(overlap_obj);
}
MEM_SAFE_FREE(coll_counts_obj);
MEM_SAFE_FREE(overlap_self);
BKE_collision_objects_free(collobjs);
return MIN2(ret, 1);
}
BLI_INLINE void max_v3_v3v3(float r[3], const float a[3], const float b[3])
{
r[0] = max_ff(a[0], b[0]);
r[1] = max_ff(a[1], b[1]);
r[2] = max_ff(a[2], b[2]);
}
void collision_get_collider_velocity(float vel_old[3],
float vel_new[3],
CollisionModifierData *collmd,
CollPair *collpair)
{
float u1, u2, u3;
/* compute barycentric coordinates */
collision_compute_barycentric(collpair->pb,
collmd->current_x[collpair->bp1].co,
collmd->current_x[collpair->bp2].co,
collmd->current_x[collpair->bp3].co,
&u1,
&u2,
&u3);
collision_interpolateOnTriangle(vel_new,
collmd->current_v[collpair->bp1].co,
collmd->current_v[collpair->bp2].co,
collmd->current_v[collpair->bp3].co,
u1,
u2,
u3);
/* XXX assume constant velocity of the collider for now */
copy_v3_v3(vel_old, vel_new);
}