2011-02-23 18:03:40 +00:00
|
|
|
/*
|
|
|
|
|
* ***** BEGIN GPL LICENSE BLOCK *****
|
|
|
|
|
*
|
|
|
|
|
* This program is free software; you can redistribute it and/or
|
|
|
|
|
* modify it under the terms of the GNU General Public License
|
|
|
|
|
* as published by the Free Software Foundation; either version 2
|
|
|
|
|
* of the License, or (at your option) any later version.
|
|
|
|
|
*
|
|
|
|
|
* This program is distributed in the hope that it will be useful,
|
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
|
* GNU General Public License for more details.
|
|
|
|
|
*
|
|
|
|
|
* You should have received a copy of the GNU General Public License
|
|
|
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
|
|
|
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
|
|
|
*
|
|
|
|
|
* The Original Code is Copyright (C) Blender Foundation
|
|
|
|
|
* All rights reserved.
|
|
|
|
|
*
|
|
|
|
|
* The Original Code is: all of this file.
|
|
|
|
|
*
|
|
|
|
|
* Contributor(s): none yet.
|
|
|
|
|
*
|
|
|
|
|
* ***** END GPL LICENSE BLOCK *****
|
|
|
|
|
*/
|
2008-01-29 21:01:12 +00:00
|
|
|
|
2011-02-27 20:40:57 +00:00
|
|
|
/** \file blender/blenkernel/intern/collision.c
|
|
|
|
|
* \ingroup bke
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
|
2008-01-29 21:01:12 +00:00
|
|
|
#include "MEM_guardedalloc.h"
|
2008-03-13 22:45:36 +00:00
|
|
|
|
|
|
|
|
#include "BKE_cloth.h"
|
|
|
|
|
|
2008-04-08 12:55:35 +00:00
|
|
|
#include "DNA_cloth_types.h"
|
2008-08-18 14:41:24 +00:00
|
|
|
#include "DNA_group_types.h"
|
2008-01-29 21:01:12 +00:00
|
|
|
#include "DNA_mesh_types.h"
|
2008-08-18 14:41:24 +00:00
|
|
|
#include "DNA_object_types.h"
|
|
|
|
|
#include "DNA_object_force.h"
|
2008-01-29 21:01:12 +00:00
|
|
|
#include "DNA_scene_types.h"
|
2010-08-10 05:41:51 +00:00
|
|
|
#include "DNA_meshdata_types.h"
|
|
|
|
|
|
2011-05-09 04:06:48 +00:00
|
|
|
#include "BLI_utildefines.h"
|
2010-08-10 05:41:51 +00:00
|
|
|
#include "BLI_blenlib.h"
|
|
|
|
|
#include "BLI_math.h"
|
|
|
|
|
#include "BLI_edgehash.h"
|
2011-01-07 18:36:47 +00:00
|
|
|
#include "BLI_utildefines.h"
|
2011-05-01 21:39:13 +00:00
|
|
|
#include "BLI_ghash.h"
|
|
|
|
|
#include "BLI_memarena.h"
|
|
|
|
|
#include "BLI_rand.h"
|
2008-03-13 22:45:36 +00:00
|
|
|
|
2008-01-29 21:01:12 +00:00
|
|
|
#include "BKE_DerivedMesh.h"
|
|
|
|
|
#include "BKE_global.h"
|
2010-06-18 14:14:13 +00:00
|
|
|
#include "BKE_scene.h"
|
2008-01-29 21:01:12 +00:00
|
|
|
#include "BKE_mesh.h"
|
|
|
|
|
#include "BKE_object.h"
|
|
|
|
|
#include "BKE_modifier.h"
|
2011-01-07 19:18:31 +00:00
|
|
|
|
2008-01-29 21:01:12 +00:00
|
|
|
#include "BKE_DerivedMesh.h"
|
2009-09-30 21:31:08 +00:00
|
|
|
#ifdef USE_BULLET
|
2008-01-29 21:01:12 +00:00
|
|
|
#include "Bullet-C-Api.h"
|
2009-09-30 21:31:08 +00:00
|
|
|
#endif
|
2008-05-07 20:42:16 +00:00
|
|
|
#include "BLI_kdopbvh.h"
|
|
|
|
|
#include "BKE_collision.h"
|
|
|
|
|
|
2011-05-02 03:44:02 +00:00
|
|
|
#ifdef WITH_ELTOPO
|
2011-05-01 21:39:13 +00:00
|
|
|
#include "eltopo-capi.h"
|
|
|
|
|
#endif
|
|
|
|
|
|
2008-05-07 20:42:16 +00:00
|
|
|
|
2008-01-29 21:01:12 +00:00
|
|
|
/***********************************
|
|
|
|
|
Collision modifier code start
|
|
|
|
|
***********************************/
|
|
|
|
|
|
|
|
|
|
/* step is limited from 0 (frame start position) to 1 (frame end position) */
|
2012-03-11 19:09:01 +00:00
|
|
|
void collision_move_object(CollisionModifierData *collmd, float step, float prevstep)
|
2008-01-29 21:01:12 +00:00
|
|
|
{
|
2010-05-25 13:33:59 +00:00
|
|
|
float tv[3] = {0, 0, 0};
|
2008-01-29 21:01:12 +00:00
|
|
|
unsigned int i = 0;
|
2008-04-08 12:55:35 +00:00
|
|
|
|
2012-04-28 06:31:57 +00:00
|
|
|
for ( i = 0; i < collmd->numverts; i++ ) {
|
2012-04-29 17:11:40 +00:00
|
|
|
sub_v3_v3v3(tv, collmd->xnew[i].co, collmd->x[i].co);
|
|
|
|
|
VECADDS(collmd->current_x[i].co, collmd->x[i].co, tv, prevstep);
|
|
|
|
|
VECADDS(collmd->current_xnew[i].co, collmd->x[i].co, tv, step);
|
|
|
|
|
sub_v3_v3v3(collmd->current_v[i].co, collmd->current_xnew[i].co, collmd->current_x[i].co);
|
2008-01-29 21:01:12 +00:00
|
|
|
}
|
2010-05-25 13:33:59 +00:00
|
|
|
|
2008-05-07 20:42:16 +00:00
|
|
|
bvhtree_update_from_mvert ( collmd->bvhtree, collmd->mfaces, collmd->numfaces, collmd->current_x, collmd->current_xnew, collmd->numverts, 1 );
|
2008-01-29 21:01:12 +00:00
|
|
|
}
|
|
|
|
|
|
2010-10-16 14:32:17 +00:00
|
|
|
BVHTree *bvhtree_build_from_mvert ( MFace *mfaces, unsigned int numfaces, MVert *x, unsigned int UNUSED(numverts), float epsilon )
|
2008-01-29 21:01:12 +00:00
|
|
|
{
|
2008-05-07 20:42:16 +00:00
|
|
|
BVHTree *tree;
|
|
|
|
|
float co[12];
|
2010-10-21 08:32:53 +00:00
|
|
|
unsigned int i;
|
2008-05-07 20:42:16 +00:00
|
|
|
MFace *tface = mfaces;
|
2008-01-29 21:01:12 +00:00
|
|
|
|
2008-05-07 20:42:16 +00:00
|
|
|
tree = BLI_bvhtree_new ( numfaces*2, epsilon, 4, 26 );
|
2008-04-08 12:55:35 +00:00
|
|
|
|
2008-05-07 20:42:16 +00:00
|
|
|
// fill tree
|
2012-04-28 06:31:57 +00:00
|
|
|
for ( i = 0; i < numfaces; i++, tface++ ) {
|
2011-09-12 04:14:12 +00:00
|
|
|
copy_v3_v3 ( &co[0*3], x[tface->v1].co );
|
|
|
|
|
copy_v3_v3 ( &co[1*3], x[tface->v2].co );
|
|
|
|
|
copy_v3_v3 ( &co[2*3], x[tface->v3].co );
|
2008-05-07 20:42:16 +00:00
|
|
|
if ( tface->v4 )
|
2011-09-12 04:14:12 +00:00
|
|
|
copy_v3_v3 ( &co[3*3], x[tface->v4].co );
|
2008-01-29 21:01:12 +00:00
|
|
|
|
2008-05-07 20:42:16 +00:00
|
|
|
BLI_bvhtree_insert ( tree, i, co, ( mfaces->v4 ? 4 : 3 ) );
|
|
|
|
|
}
|
2008-04-08 12:55:35 +00:00
|
|
|
|
2008-05-07 20:42:16 +00:00
|
|
|
// balance tree
|
|
|
|
|
BLI_bvhtree_balance ( tree );
|
2008-04-08 12:55:35 +00:00
|
|
|
|
2008-05-07 20:42:16 +00:00
|
|
|
return tree;
|
2008-01-29 21:01:12 +00:00
|
|
|
}
|
|
|
|
|
|
2012-04-29 17:11:40 +00:00
|
|
|
void bvhtree_update_from_mvert(BVHTree * bvhtree, MFace *faces, int numfaces, MVert *x, MVert *xnew, int UNUSED(numverts), int moving )
|
2008-01-29 21:01:12 +00:00
|
|
|
{
|
2008-05-07 20:42:16 +00:00
|
|
|
int i;
|
|
|
|
|
MFace *mfaces = faces;
|
|
|
|
|
float co[12], co_moving[12];
|
|
|
|
|
int ret = 0;
|
2008-04-08 12:55:35 +00:00
|
|
|
|
2008-05-07 20:42:16 +00:00
|
|
|
if ( !bvhtree )
|
2008-01-29 21:01:12 +00:00
|
|
|
return;
|
2008-04-08 12:55:35 +00:00
|
|
|
|
2012-04-28 06:31:57 +00:00
|
|
|
if ( x ) {
|
|
|
|
|
for ( i = 0; i < numfaces; i++, mfaces++ ) {
|
2011-09-12 04:14:12 +00:00
|
|
|
copy_v3_v3 ( &co[0*3], x[mfaces->v1].co );
|
|
|
|
|
copy_v3_v3 ( &co[1*3], x[mfaces->v2].co );
|
|
|
|
|
copy_v3_v3 ( &co[2*3], x[mfaces->v3].co );
|
2008-05-07 20:42:16 +00:00
|
|
|
if ( mfaces->v4 )
|
2011-09-12 04:14:12 +00:00
|
|
|
copy_v3_v3 ( &co[3*3], x[mfaces->v4].co );
|
2008-05-07 20:42:16 +00:00
|
|
|
|
|
|
|
|
// copy new locations into array
|
2012-04-28 06:31:57 +00:00
|
|
|
if ( moving && xnew ) {
|
2008-05-07 20:42:16 +00:00
|
|
|
// update moving positions
|
2011-09-12 04:14:12 +00:00
|
|
|
copy_v3_v3 ( &co_moving[0*3], xnew[mfaces->v1].co );
|
|
|
|
|
copy_v3_v3 ( &co_moving[1*3], xnew[mfaces->v2].co );
|
|
|
|
|
copy_v3_v3 ( &co_moving[2*3], xnew[mfaces->v3].co );
|
2008-05-07 20:42:16 +00:00
|
|
|
if ( mfaces->v4 )
|
2011-09-12 04:14:12 +00:00
|
|
|
copy_v3_v3 ( &co_moving[3*3], xnew[mfaces->v4].co );
|
2008-05-07 20:42:16 +00:00
|
|
|
|
|
|
|
|
ret = BLI_bvhtree_update_node ( bvhtree, i, co, co_moving, ( mfaces->v4 ? 4 : 3 ) );
|
|
|
|
|
}
|
2012-04-28 06:31:57 +00:00
|
|
|
else {
|
2008-05-07 20:42:16 +00:00
|
|
|
ret = BLI_bvhtree_update_node ( bvhtree, i, co, NULL, ( mfaces->v4 ? 4 : 3 ) );
|
|
|
|
|
}
|
2008-04-08 12:55:35 +00:00
|
|
|
|
2008-05-07 20:42:16 +00:00
|
|
|
// check if tree is already full
|
|
|
|
|
if ( !ret )
|
|
|
|
|
break;
|
|
|
|
|
}
|
2008-04-08 12:55:35 +00:00
|
|
|
|
2008-05-07 20:42:16 +00:00
|
|
|
BLI_bvhtree_update_tree ( bvhtree );
|
|
|
|
|
}
|
2008-01-29 21:01:12 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/***********************************
|
|
|
|
|
Collision modifier code end
|
|
|
|
|
***********************************/
|
2008-05-29 14:23:08 +00:00
|
|
|
|
2008-01-29 21:01:12 +00:00
|
|
|
// w3 is not perfect
|
2009-09-14 16:52:06 +00:00
|
|
|
static void collision_compute_barycentric ( float pv[3], float p1[3], float p2[3], float p3[3], float *w1, float *w2, float *w3 )
|
2008-01-29 21:01:12 +00:00
|
|
|
{
|
|
|
|
|
double tempV1[3], tempV2[3], tempV4[3];
|
2012-04-29 15:47:02 +00:00
|
|
|
double a, b, c, d, e, f;
|
2008-01-29 21:01:12 +00:00
|
|
|
|
2008-04-08 12:55:35 +00:00
|
|
|
VECSUB ( tempV1, p1, p3 );
|
|
|
|
|
VECSUB ( tempV2, p2, p3 );
|
|
|
|
|
VECSUB ( tempV4, pv, p3 );
|
|
|
|
|
|
|
|
|
|
a = INPR ( tempV1, tempV1 );
|
|
|
|
|
b = INPR ( tempV1, tempV2 );
|
|
|
|
|
c = INPR ( tempV2, tempV2 );
|
|
|
|
|
e = INPR ( tempV1, tempV4 );
|
|
|
|
|
f = INPR ( tempV2, tempV4 );
|
|
|
|
|
|
|
|
|
|
d = ( a * c - b * b );
|
|
|
|
|
|
2012-04-28 06:31:57 +00:00
|
|
|
if ( ABS ( d ) < (double)ALMOST_ZERO ) {
|
2008-01-29 21:01:12 +00:00
|
|
|
*w1 = *w2 = *w3 = 1.0 / 3.0;
|
|
|
|
|
return;
|
|
|
|
|
}
|
2008-04-08 12:55:35 +00:00
|
|
|
|
|
|
|
|
w1[0] = ( float ) ( ( e * c - b * f ) / d );
|
|
|
|
|
|
|
|
|
|
if ( w1[0] < 0 )
|
2008-01-29 21:01:12 +00:00
|
|
|
w1[0] = 0;
|
2008-04-08 12:55:35 +00:00
|
|
|
|
|
|
|
|
w2[0] = ( float ) ( ( f - b * ( double ) w1[0] ) / c );
|
|
|
|
|
|
|
|
|
|
if ( w2[0] < 0 )
|
2008-01-29 21:01:12 +00:00
|
|
|
w2[0] = 0;
|
2008-04-08 12:55:35 +00:00
|
|
|
|
2008-01-29 21:01:12 +00:00
|
|
|
w3[0] = 1.0f - w1[0] - w2[0];
|
|
|
|
|
}
|
|
|
|
|
|
2012-11-23 10:03:50 +00:00
|
|
|
#ifdef __GNUC__
|
|
|
|
|
# pragma GCC diagnostic push
|
|
|
|
|
# pragma GCC diagnostic ignored "-Wdouble-promotion"
|
|
|
|
|
#endif
|
2012-11-04 07:18:29 +00:00
|
|
|
|
2008-04-08 12:55:35 +00:00
|
|
|
DO_INLINE void collision_interpolateOnTriangle ( float to[3], float v1[3], float v2[3], float v3[3], double w1, double w2, double w3 )
|
2008-01-29 21:01:12 +00:00
|
|
|
{
|
2012-03-23 20:18:09 +00:00
|
|
|
zero_v3(to);
|
|
|
|
|
VECADDMUL(to, v1, w1);
|
|
|
|
|
VECADDMUL(to, v2, w2);
|
|
|
|
|
VECADDMUL(to, v3, w3);
|
2008-01-29 21:01:12 +00:00
|
|
|
}
|
|
|
|
|
|
2011-02-14 17:55:27 +00:00
|
|
|
static int cloth_collision_response_static ( ClothModifierData *clmd, CollisionModifierData *collmd, CollPair *collpair, CollPair *collision_end )
|
2008-01-29 21:01:12 +00:00
|
|
|
{
|
|
|
|
|
int result = 0;
|
|
|
|
|
Cloth *cloth1;
|
|
|
|
|
float w1, w2, w3, u1, u2, u3;
|
|
|
|
|
float v1[3], v2[3], relativeVelocity[3];
|
|
|
|
|
float magrelVel;
|
2008-05-07 20:42:16 +00:00
|
|
|
float epsilon2 = BLI_bvhtree_getepsilon ( collmd->bvhtree );
|
2008-04-08 12:55:35 +00:00
|
|
|
|
2008-01-29 21:01:12 +00:00
|
|
|
cloth1 = clmd->clothObject;
|
|
|
|
|
|
2012-04-28 06:31:57 +00:00
|
|
|
for ( ; collpair != collision_end; collpair++ ) {
|
2012-05-15 13:46:50 +00:00
|
|
|
float i1[3], i2[3], i3[3];
|
|
|
|
|
|
|
|
|
|
zero_v3(i1);
|
|
|
|
|
zero_v3(i2);
|
|
|
|
|
zero_v3(i3);
|
|
|
|
|
|
2012-07-06 23:56:59 +00:00
|
|
|
/* only handle static collisions here */
|
2008-05-07 20:42:16 +00:00
|
|
|
if ( collpair->flag & COLLISION_IN_FUTURE )
|
|
|
|
|
continue;
|
2008-04-08 12:55:35 +00:00
|
|
|
|
2012-07-06 23:56:59 +00:00
|
|
|
/* compute barycentric coordinates for both collision points */
|
2008-04-08 12:55:35 +00:00
|
|
|
collision_compute_barycentric ( collpair->pa,
|
2008-05-26 09:39:32 +00:00
|
|
|
cloth1->verts[collpair->ap1].txold,
|
|
|
|
|
cloth1->verts[collpair->ap2].txold,
|
|
|
|
|
cloth1->verts[collpair->ap3].txold,
|
|
|
|
|
&w1, &w2, &w3 );
|
2008-04-08 12:55:35 +00:00
|
|
|
|
2012-07-06 23:56:59 +00:00
|
|
|
/* was: txold */
|
2008-04-08 12:55:35 +00:00
|
|
|
collision_compute_barycentric ( collpair->pb,
|
2008-05-26 09:39:32 +00:00
|
|
|
collmd->current_x[collpair->bp1].co,
|
|
|
|
|
collmd->current_x[collpair->bp2].co,
|
|
|
|
|
collmd->current_x[collpair->bp3].co,
|
|
|
|
|
&u1, &u2, &u3 );
|
2008-04-08 12:55:35 +00:00
|
|
|
|
2012-07-06 23:56:59 +00:00
|
|
|
/* Calculate relative "velocity". */
|
2008-04-08 12:55:35 +00:00
|
|
|
collision_interpolateOnTriangle ( v1, cloth1->verts[collpair->ap1].tv, cloth1->verts[collpair->ap2].tv, cloth1->verts[collpair->ap3].tv, w1, w2, w3 );
|
|
|
|
|
|
|
|
|
|
collision_interpolateOnTriangle ( v2, collmd->current_v[collpair->bp1].co, collmd->current_v[collpair->bp2].co, collmd->current_v[collpair->bp3].co, u1, u2, u3 );
|
|
|
|
|
|
2012-04-29 17:11:40 +00:00
|
|
|
sub_v3_v3v3(relativeVelocity, v2, v1);
|
2008-04-08 12:55:35 +00:00
|
|
|
|
2012-07-06 23:56:59 +00:00
|
|
|
/* Calculate the normal component of the relative velocity (actually only the magnitude - the direction is stored in 'normal'). */
|
2012-04-29 17:11:40 +00:00
|
|
|
magrelVel = dot_v3v3(relativeVelocity, collpair->normal);
|
2008-04-08 12:55:35 +00:00
|
|
|
|
2012-07-06 23:56:59 +00:00
|
|
|
/* printf("magrelVel: %f\n", magrelVel); */
|
2008-04-08 12:55:35 +00:00
|
|
|
|
2012-07-06 23:56:59 +00:00
|
|
|
/* Calculate masses of points.
|
|
|
|
|
* TODO */
|
2008-04-08 12:55:35 +00:00
|
|
|
|
2012-07-06 23:56:59 +00:00
|
|
|
/* If v_n_mag < 0 the edges are approaching each other. */
|
2012-04-28 06:31:57 +00:00
|
|
|
if ( magrelVel > ALMOST_ZERO ) {
|
2012-07-06 23:56:59 +00:00
|
|
|
/* Calculate Impulse magnitude to stop all motion in normal direction. */
|
2008-02-28 00:01:19 +00:00
|
|
|
float magtangent = 0, repulse = 0, d = 0;
|
2008-02-03 22:37:43 +00:00
|
|
|
double impulse = 0.0;
|
|
|
|
|
float vrel_t_pre[3];
|
2012-05-15 11:14:50 +00:00
|
|
|
float temp[3], spf;
|
2008-05-26 09:39:32 +00:00
|
|
|
|
2012-07-06 23:56:59 +00:00
|
|
|
/* calculate tangential velocity */
|
2012-05-15 11:14:50 +00:00
|
|
|
copy_v3_v3 ( temp, collpair->normal );
|
|
|
|
|
mul_v3_fl(temp, magrelVel);
|
|
|
|
|
sub_v3_v3v3(vrel_t_pre, relativeVelocity, temp);
|
2008-05-26 09:39:32 +00:00
|
|
|
|
2012-07-06 23:56:59 +00:00
|
|
|
/* Decrease in magnitude of relative tangential velocity due to coulomb friction
|
|
|
|
|
* in original formula "magrelVel" should be the "change of relative velocity in normal direction" */
|
2012-10-23 13:28:22 +00:00
|
|
|
magtangent = min_ff(clmd->coll_parms->friction * 0.01f * magrelVel, sqrtf(dot_v3v3(vrel_t_pre, vrel_t_pre)));
|
2008-05-26 09:39:32 +00:00
|
|
|
|
2012-07-06 23:56:59 +00:00
|
|
|
/* Apply friction impulse. */
|
2012-05-15 11:14:50 +00:00
|
|
|
if ( magtangent > ALMOST_ZERO ) {
|
|
|
|
|
normalize_v3(vrel_t_pre);
|
2008-05-26 09:39:32 +00:00
|
|
|
|
2012-07-06 23:56:59 +00:00
|
|
|
impulse = magtangent / ( 1.0f + w1*w1 + w2*w2 + w3*w3 ); /* 2.0 * */
|
2012-05-15 11:14:50 +00:00
|
|
|
VECADDMUL ( i1, vrel_t_pre, w1 * impulse );
|
|
|
|
|
VECADDMUL ( i2, vrel_t_pre, w2 * impulse );
|
|
|
|
|
VECADDMUL ( i3, vrel_t_pre, w3 * impulse );
|
|
|
|
|
}
|
2008-05-26 09:39:32 +00:00
|
|
|
|
2012-07-06 23:56:59 +00:00
|
|
|
/* Apply velocity stopping impulse
|
|
|
|
|
* I_c = m * v_N / 2.0
|
|
|
|
|
* no 2.0 * magrelVel normally, but looks nicer DG */
|
2012-05-15 11:14:50 +00:00
|
|
|
impulse = magrelVel / ( 1.0 + w1*w1 + w2*w2 + w3*w3 );
|
2008-05-26 09:39:32 +00:00
|
|
|
|
2012-05-15 11:14:50 +00:00
|
|
|
VECADDMUL ( i1, collpair->normal, w1 * impulse );
|
|
|
|
|
cloth1->verts[collpair->ap1].impulse_count++;
|
2008-05-26 09:39:32 +00:00
|
|
|
|
2012-05-15 11:14:50 +00:00
|
|
|
VECADDMUL ( i2, collpair->normal, w2 * impulse );
|
|
|
|
|
cloth1->verts[collpair->ap2].impulse_count++;
|
2008-05-26 09:39:32 +00:00
|
|
|
|
2012-05-15 11:14:50 +00:00
|
|
|
VECADDMUL ( i3, collpair->normal, w3 * impulse );
|
|
|
|
|
cloth1->verts[collpair->ap3].impulse_count++;
|
2008-05-26 09:39:32 +00:00
|
|
|
|
2012-07-06 23:56:59 +00:00
|
|
|
/* Apply repulse impulse if distance too short
|
|
|
|
|
* I_r = -min(dt*kd, m(0, 1d/dt - v_n))
|
|
|
|
|
* DG: this formula ineeds to be changed for this code since we apply impulses/repulses like this:
|
|
|
|
|
* v += impulse; x_new = x + v;
|
|
|
|
|
* We don't use dt!!
|
|
|
|
|
* DG TODO: Fix usage of dt here! */
|
2012-05-15 11:14:50 +00:00
|
|
|
spf = (float)clmd->sim_parms->stepsPerFrame / clmd->sim_parms->timescale;
|
2008-05-26 09:39:32 +00:00
|
|
|
|
2012-05-15 11:14:50 +00:00
|
|
|
d = clmd->coll_parms->epsilon*8.0f/9.0f + epsilon2*8.0f/9.0f - collpair->distance;
|
|
|
|
|
if ( ( magrelVel < 0.1f*d*spf ) && ( d > ALMOST_ZERO ) ) {
|
|
|
|
|
repulse = MIN2 ( d*1.0f/spf, 0.1f*d*spf - magrelVel );
|
2008-05-26 09:39:32 +00:00
|
|
|
|
2012-07-06 23:56:59 +00:00
|
|
|
/* stay on the safe side and clamp repulse */
|
2012-05-15 11:14:50 +00:00
|
|
|
if ( impulse > ALMOST_ZERO )
|
2012-10-27 11:18:54 +00:00
|
|
|
repulse = min_ff( repulse, 5.0*impulse );
|
|
|
|
|
repulse = max_ff(impulse, repulse);
|
2008-05-26 09:39:32 +00:00
|
|
|
|
2012-07-06 23:56:59 +00:00
|
|
|
impulse = repulse / ( 1.0f + w1*w1 + w2*w2 + w3*w3 ); /* original 2.0 / 0.25 */
|
2012-05-15 11:14:50 +00:00
|
|
|
VECADDMUL ( i1, collpair->normal, impulse );
|
|
|
|
|
VECADDMUL ( i2, collpair->normal, impulse );
|
|
|
|
|
VECADDMUL ( i3, collpair->normal, impulse );
|
2008-05-26 09:39:32 +00:00
|
|
|
}
|
|
|
|
|
|
2012-05-15 13:46:50 +00:00
|
|
|
result = 1;
|
|
|
|
|
}
|
2012-06-27 18:29:47 +00:00
|
|
|
else {
|
2012-07-06 23:56:59 +00:00
|
|
|
/* Apply repulse impulse if distance too short
|
|
|
|
|
* I_r = -min(dt*kd, max(0, 1d/dt - v_n))
|
|
|
|
|
* DG: this formula ineeds to be changed for this code since we apply impulses/repulses like this:
|
|
|
|
|
* v += impulse; x_new = x + v;
|
|
|
|
|
* We don't use dt!! */
|
2012-06-02 22:47:33 +00:00
|
|
|
float spf = (float)clmd->sim_parms->stepsPerFrame / clmd->sim_parms->timescale;
|
2012-05-15 13:46:50 +00:00
|
|
|
|
2012-11-04 07:18:29 +00:00
|
|
|
float d = clmd->coll_parms->epsilon*8.0f/9.0f + epsilon2*8.0f/9.0f - (float)collpair->distance;
|
2012-05-15 13:46:50 +00:00
|
|
|
if ( d > ALMOST_ZERO) {
|
2012-07-06 23:56:59 +00:00
|
|
|
/* stay on the safe side and clamp repulse */
|
2012-06-02 22:01:04 +00:00
|
|
|
float repulse = d*1.0f/spf;
|
|
|
|
|
|
2012-11-04 07:18:29 +00:00
|
|
|
float impulse = repulse / ( 3.0f * ( 1.0f + w1*w1 + w2*w2 + w3*w3 )); /* original 2.0 / 0.25 */
|
2008-05-26 09:39:32 +00:00
|
|
|
|
2012-05-15 13:46:50 +00:00
|
|
|
VECADDMUL ( i1, collpair->normal, impulse );
|
|
|
|
|
VECADDMUL ( i2, collpair->normal, impulse );
|
|
|
|
|
VECADDMUL ( i3, collpair->normal, impulse );
|
2008-05-26 09:39:32 +00:00
|
|
|
|
2012-05-15 13:46:50 +00:00
|
|
|
cloth1->verts[collpair->ap1].impulse_count++;
|
|
|
|
|
cloth1->verts[collpair->ap2].impulse_count++;
|
|
|
|
|
cloth1->verts[collpair->ap3].impulse_count++;
|
2008-05-26 09:39:32 +00:00
|
|
|
|
2012-05-15 13:46:50 +00:00
|
|
|
result = 1;
|
2012-05-15 11:14:50 +00:00
|
|
|
}
|
2012-05-15 13:46:50 +00:00
|
|
|
}
|
2008-05-26 09:39:32 +00:00
|
|
|
|
2012-05-22 22:03:41 +00:00
|
|
|
if (result) {
|
2012-05-15 13:46:50 +00:00
|
|
|
int i = 0;
|
|
|
|
|
|
2012-05-22 22:03:41 +00:00
|
|
|
for (i = 0; i < 3; i++) {
|
|
|
|
|
if (cloth1->verts[collpair->ap1].impulse_count > 0 && ABS(cloth1->verts[collpair->ap1].impulse[i]) < ABS(i1[i]))
|
2012-05-15 13:46:50 +00:00
|
|
|
cloth1->verts[collpair->ap1].impulse[i] = i1[i];
|
|
|
|
|
|
2012-05-22 22:03:41 +00:00
|
|
|
if (cloth1->verts[collpair->ap2].impulse_count > 0 && ABS(cloth1->verts[collpair->ap2].impulse[i]) < ABS(i2[i]))
|
2012-05-15 13:46:50 +00:00
|
|
|
cloth1->verts[collpair->ap2].impulse[i] = i2[i];
|
|
|
|
|
|
2012-05-22 22:03:41 +00:00
|
|
|
if (cloth1->verts[collpair->ap3].impulse_count > 0 && ABS(cloth1->verts[collpair->ap3].impulse[i]) < ABS(i3[i]))
|
2012-05-15 13:46:50 +00:00
|
|
|
cloth1->verts[collpair->ap3].impulse[i] = i3[i];
|
|
|
|
|
}
|
2008-05-26 09:39:32 +00:00
|
|
|
}
|
|
|
|
|
}
|
2012-05-15 11:14:50 +00:00
|
|
|
return result;
|
2008-05-26 09:39:32 +00:00
|
|
|
}
|
|
|
|
|
|
2012-11-23 10:03:50 +00:00
|
|
|
#ifdef __GNUC__
|
|
|
|
|
# pragma GCC diagnostic pop
|
|
|
|
|
#endif
|
2012-11-04 07:18:29 +00:00
|
|
|
|
2012-05-15 11:14:50 +00:00
|
|
|
//Determines collisions on overlap, collisions are written to collpair[i] and collision+number_collision_found is returned
|
2012-05-15 18:45:20 +00:00
|
|
|
static CollPair* cloth_collision(ModifierData *md1, ModifierData *md2,
|
|
|
|
|
BVHTreeOverlap *overlap, CollPair *collpair, float UNUSED(dt))
|
2008-01-29 21:01:12 +00:00
|
|
|
{
|
2012-05-15 11:14:50 +00:00
|
|
|
ClothModifierData *clmd = (ClothModifierData *)md1;
|
|
|
|
|
CollisionModifierData *collmd = (CollisionModifierData *) md2;
|
2012-05-15 18:45:20 +00:00
|
|
|
/* Cloth *cloth = clmd->clothObject; */ /* UNUSED */
|
2012-05-15 11:14:50 +00:00
|
|
|
MFace *face1=NULL, *face2 = NULL;
|
|
|
|
|
#ifdef USE_BULLET
|
|
|
|
|
ClothVertex *verts1 = clmd->clothObject->verts;
|
|
|
|
|
#endif
|
|
|
|
|
double distance = 0;
|
|
|
|
|
float epsilon1 = clmd->coll_parms->epsilon;
|
|
|
|
|
float epsilon2 = BLI_bvhtree_getepsilon ( collmd->bvhtree );
|
|
|
|
|
int i;
|
2008-05-26 09:39:32 +00:00
|
|
|
|
2012-05-15 11:14:50 +00:00
|
|
|
face1 = & ( clmd->clothObject->mfaces[overlap->indexA] );
|
|
|
|
|
face2 = & ( collmd->mfaces[overlap->indexB] );
|
2008-05-26 09:39:32 +00:00
|
|
|
|
2012-05-15 11:14:50 +00:00
|
|
|
// check all 4 possible collisions
|
|
|
|
|
for ( i = 0; i < 4; i++ ) {
|
|
|
|
|
if ( i == 0 ) {
|
|
|
|
|
// fill faceA
|
|
|
|
|
collpair->ap1 = face1->v1;
|
|
|
|
|
collpair->ap2 = face1->v2;
|
|
|
|
|
collpair->ap3 = face1->v3;
|
2008-05-26 09:39:32 +00:00
|
|
|
|
2012-05-15 11:14:50 +00:00
|
|
|
// fill faceB
|
|
|
|
|
collpair->bp1 = face2->v1;
|
|
|
|
|
collpair->bp2 = face2->v2;
|
|
|
|
|
collpair->bp3 = face2->v3;
|
2008-01-29 21:01:12 +00:00
|
|
|
}
|
2012-05-15 11:14:50 +00:00
|
|
|
else if ( i == 1 ) {
|
|
|
|
|
if ( face1->v4 ) {
|
|
|
|
|
// fill faceA
|
|
|
|
|
collpair->ap1 = face1->v1;
|
|
|
|
|
collpair->ap2 = face1->v3;
|
|
|
|
|
collpair->ap3 = face1->v4;
|
2008-05-26 09:39:32 +00:00
|
|
|
|
2012-05-15 11:14:50 +00:00
|
|
|
// fill faceB
|
|
|
|
|
collpair->bp1 = face2->v1;
|
|
|
|
|
collpair->bp2 = face2->v2;
|
|
|
|
|
collpair->bp3 = face2->v3;
|
|
|
|
|
}
|
2012-07-21 22:58:08 +00:00
|
|
|
else {
|
2012-05-15 11:14:50 +00:00
|
|
|
i++;
|
2012-07-21 22:58:08 +00:00
|
|
|
}
|
2008-01-29 21:01:12 +00:00
|
|
|
}
|
2012-05-15 11:14:50 +00:00
|
|
|
if ( i == 2 ) {
|
|
|
|
|
if ( face2->v4 ) {
|
|
|
|
|
// fill faceA
|
|
|
|
|
collpair->ap1 = face1->v1;
|
|
|
|
|
collpair->ap2 = face1->v2;
|
|
|
|
|
collpair->ap3 = face1->v3;
|
2008-05-26 09:39:32 +00:00
|
|
|
|
2012-05-15 11:14:50 +00:00
|
|
|
// fill faceB
|
|
|
|
|
collpair->bp1 = face2->v1;
|
|
|
|
|
collpair->bp2 = face2->v4;
|
|
|
|
|
collpair->bp3 = face2->v3;
|
|
|
|
|
}
|
2012-07-21 22:58:08 +00:00
|
|
|
else {
|
2012-05-15 11:14:50 +00:00
|
|
|
break;
|
2012-07-21 22:58:08 +00:00
|
|
|
}
|
2008-01-29 21:01:12 +00:00
|
|
|
}
|
2012-05-15 11:14:50 +00:00
|
|
|
else if ( i == 3 ) {
|
|
|
|
|
if ( face1->v4 && face2->v4 ) {
|
|
|
|
|
// fill faceA
|
|
|
|
|
collpair->ap1 = face1->v1;
|
|
|
|
|
collpair->ap2 = face1->v3;
|
|
|
|
|
collpair->ap3 = face1->v4;
|
2008-05-26 09:39:32 +00:00
|
|
|
|
2012-05-15 11:14:50 +00:00
|
|
|
// fill faceB
|
|
|
|
|
collpair->bp1 = face2->v1;
|
|
|
|
|
collpair->bp2 = face2->v3;
|
|
|
|
|
collpair->bp3 = face2->v4;
|
|
|
|
|
}
|
2012-07-21 22:58:08 +00:00
|
|
|
else {
|
2012-05-15 11:14:50 +00:00
|
|
|
break;
|
2012-07-21 22:58:08 +00:00
|
|
|
}
|
2008-05-07 20:42:16 +00:00
|
|
|
}
|
2012-05-15 11:14:50 +00:00
|
|
|
|
|
|
|
|
#ifdef USE_BULLET
|
|
|
|
|
// calc distance + normal
|
|
|
|
|
distance = plNearestPoints (
|
|
|
|
|
verts1[collpair->ap1].txold, verts1[collpair->ap2].txold, verts1[collpair->ap3].txold, collmd->current_x[collpair->bp1].co, collmd->current_x[collpair->bp2].co, collmd->current_x[collpair->bp3].co, collpair->pa, collpair->pb, collpair->vector );
|
|
|
|
|
#else
|
|
|
|
|
// just be sure that we don't add anything
|
|
|
|
|
distance = 2.0 * (double)( epsilon1 + epsilon2 + ALMOST_ZERO );
|
|
|
|
|
#endif
|
2008-05-26 09:39:32 +00:00
|
|
|
|
2012-10-19 16:44:08 +00:00
|
|
|
// distance -1 means no collision result
|
2012-11-04 07:18:29 +00:00
|
|
|
if (distance != -1.0 && (distance <= (double)(epsilon1 + epsilon2 + ALMOST_ZERO))) {
|
2012-05-15 11:14:50 +00:00
|
|
|
normalize_v3_v3(collpair->normal, collpair->vector);
|
2008-05-26 09:39:32 +00:00
|
|
|
|
2012-05-15 11:14:50 +00:00
|
|
|
collpair->distance = distance;
|
|
|
|
|
collpair->flag = 0;
|
|
|
|
|
collpair++;
|
|
|
|
|
}/*
|
2012-07-21 22:58:08 +00:00
|
|
|
else {
|
2012-05-15 11:14:50 +00:00
|
|
|
float w1, w2, w3, u1, u2, u3;
|
|
|
|
|
float v1[3], v2[3], relativeVelocity[3];
|
2008-05-26 09:39:32 +00:00
|
|
|
|
2012-05-15 11:14:50 +00:00
|
|
|
// calc relative velocity
|
|
|
|
|
|
|
|
|
|
// compute barycentric coordinates for both collision points
|
|
|
|
|
collision_compute_barycentric ( collpair->pa,
|
|
|
|
|
verts1[collpair->ap1].txold,
|
|
|
|
|
verts1[collpair->ap2].txold,
|
|
|
|
|
verts1[collpair->ap3].txold,
|
|
|
|
|
&w1, &w2, &w3 );
|
2008-05-26 09:39:32 +00:00
|
|
|
|
2012-05-15 11:14:50 +00:00
|
|
|
// was: txold
|
|
|
|
|
collision_compute_barycentric ( collpair->pb,
|
|
|
|
|
collmd->current_x[collpair->bp1].co,
|
|
|
|
|
collmd->current_x[collpair->bp2].co,
|
|
|
|
|
collmd->current_x[collpair->bp3].co,
|
|
|
|
|
&u1, &u2, &u3 );
|
2008-05-26 09:39:32 +00:00
|
|
|
|
2012-05-15 11:14:50 +00:00
|
|
|
// Calculate relative "velocity".
|
|
|
|
|
collision_interpolateOnTriangle ( v1, verts1[collpair->ap1].tv, verts1[collpair->ap2].tv, verts1[collpair->ap3].tv, w1, w2, w3 );
|
2008-05-26 09:39:32 +00:00
|
|
|
|
2012-05-15 11:14:50 +00:00
|
|
|
collision_interpolateOnTriangle ( v2, collmd->current_v[collpair->bp1].co, collmd->current_v[collpair->bp2].co, collmd->current_v[collpair->bp3].co, u1, u2, u3 );
|
2008-05-26 09:39:32 +00:00
|
|
|
|
2012-05-15 11:14:50 +00:00
|
|
|
sub_v3_v3v3(relativeVelocity, v2, v1);
|
2008-05-29 14:23:08 +00:00
|
|
|
|
2012-05-15 11:14:50 +00:00
|
|
|
if (sqrt(dot_v3v3(relativeVelocity, relativeVelocity)) >= distance)
|
2008-01-29 21:01:12 +00:00
|
|
|
{
|
2012-05-15 11:14:50 +00:00
|
|
|
// check for collision in the future
|
|
|
|
|
collpair->flag |= COLLISION_IN_FUTURE;
|
|
|
|
|
collpair++;
|
2008-01-29 21:01:12 +00:00
|
|
|
}
|
2012-05-15 11:14:50 +00:00
|
|
|
}*/
|
2008-03-03 19:02:01 +00:00
|
|
|
}
|
2012-05-15 11:14:50 +00:00
|
|
|
return collpair;
|
2008-03-03 19:02:01 +00:00
|
|
|
}
|
|
|
|
|
|
2012-03-20 04:15:41 +00:00
|
|
|
static void add_collision_object(Object ***objs, unsigned int *numobj, unsigned int *maxobj, Object *ob, Object *self, int level, unsigned int modifier_type)
|
2008-07-02 20:28:49 +00:00
|
|
|
{
|
2010-03-26 10:52:55 +00:00
|
|
|
CollisionModifierData *cmd= NULL;
|
|
|
|
|
|
2012-03-24 06:18:31 +00:00
|
|
|
if (ob == self)
|
2010-03-26 10:52:55 +00:00
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
/* only get objects with collision modifier */
|
2012-03-24 06:18:31 +00:00
|
|
|
if (((modifier_type == eModifierType_Collision) && ob->pd && ob->pd->deflect) || (modifier_type != eModifierType_Collision))
|
2012-03-20 04:15:41 +00:00
|
|
|
cmd= (CollisionModifierData *)modifiers_findByType(ob, modifier_type);
|
2008-07-02 20:28:49 +00:00
|
|
|
|
2012-10-21 05:46:41 +00:00
|
|
|
if (cmd) {
|
2010-03-26 10:52:55 +00:00
|
|
|
/* extend array */
|
2012-03-24 06:18:31 +00:00
|
|
|
if (*numobj >= *maxobj) {
|
2010-03-26 10:52:55 +00:00
|
|
|
*maxobj *= 2;
|
|
|
|
|
*objs= MEM_reallocN(*objs, sizeof(Object*)*(*maxobj));
|
2008-08-18 14:41:24 +00:00
|
|
|
}
|
|
|
|
|
|
2010-03-26 10:52:55 +00:00
|
|
|
(*objs)[*numobj] = ob;
|
|
|
|
|
(*numobj)++;
|
|
|
|
|
}
|
2008-04-08 12:55:35 +00:00
|
|
|
|
2010-03-26 10:52:55 +00:00
|
|
|
/* objects in dupli groups, one level only for now */
|
2012-03-24 06:18:31 +00:00
|
|
|
if (ob->dup_group && level == 0) {
|
2010-03-26 10:52:55 +00:00
|
|
|
GroupObject *go;
|
|
|
|
|
Group *group= ob->dup_group;
|
2008-05-07 20:42:16 +00:00
|
|
|
|
2010-03-26 10:52:55 +00:00
|
|
|
/* add objects */
|
2012-03-24 06:18:31 +00:00
|
|
|
for (go= group->gobject.first; go; go= go->next)
|
2012-03-20 04:15:41 +00:00
|
|
|
add_collision_object(objs, numobj, maxobj, go->ob, self, level+1, modifier_type);
|
2012-10-21 05:46:41 +00:00
|
|
|
}
|
2010-03-26 10:52:55 +00:00
|
|
|
}
|
2008-05-07 20:42:16 +00:00
|
|
|
|
2010-03-26 10:52:55 +00:00
|
|
|
// return all collision objects in scene
|
|
|
|
|
// collision object will exclude self
|
2012-03-20 04:15:41 +00:00
|
|
|
Object **get_collisionobjects(Scene *scene, Object *self, Group *group, unsigned int *numcollobj, unsigned int modifier_type)
|
2010-03-26 10:52:55 +00:00
|
|
|
{
|
|
|
|
|
Base *base;
|
|
|
|
|
Object **objs;
|
|
|
|
|
GroupObject *go;
|
2010-10-21 08:32:53 +00:00
|
|
|
unsigned int numobj= 0, maxobj= 100;
|
2010-03-26 10:52:55 +00:00
|
|
|
|
|
|
|
|
objs= MEM_callocN(sizeof(Object *)*maxobj, "CollisionObjectsArray");
|
|
|
|
|
|
|
|
|
|
/* gather all collision objects */
|
2012-03-24 06:18:31 +00:00
|
|
|
if (group) {
|
2010-03-26 10:52:55 +00:00
|
|
|
/* use specified group */
|
2012-03-24 06:18:31 +00:00
|
|
|
for (go= group->gobject.first; go; go= go->next)
|
2012-03-20 04:15:41 +00:00
|
|
|
add_collision_object(&objs, &numobj, &maxobj, go->ob, self, 0, modifier_type);
|
2010-03-26 10:52:55 +00:00
|
|
|
}
|
|
|
|
|
else {
|
2010-12-17 15:37:59 +00:00
|
|
|
Scene *sce_iter;
|
2010-03-26 10:52:55 +00:00
|
|
|
/* add objects in same layer in scene */
|
2012-03-24 06:18:31 +00:00
|
|
|
for (SETLOOPER(scene, sce_iter, base)) {
|
|
|
|
|
if (base->lay & self->lay)
|
2012-03-20 04:15:41 +00:00
|
|
|
add_collision_object(&objs, &numobj, &maxobj, base->object, self, 0, modifier_type);
|
2010-06-18 14:14:13 +00:00
|
|
|
|
|
|
|
|
}
|
2008-03-03 19:02:01 +00:00
|
|
|
}
|
2010-03-26 10:52:55 +00:00
|
|
|
|
|
|
|
|
*numcollobj= numobj;
|
|
|
|
|
|
2008-07-02 20:28:49 +00:00
|
|
|
return objs;
|
|
|
|
|
}
|
|
|
|
|
|
2010-03-26 10:52:55 +00:00
|
|
|
static void add_collider_cache_object(ListBase **objs, Object *ob, Object *self, int level)
|
Unified effector functionality for particles, cloth and softbody
* Unified scene wide gravity (currently in scene buttons)
instead of each simulation having it's own gravity.
* Weight parameters for all effectors and an effector group
setting.
* Every effector can use noise.
* Most effectors have "shapes" point, plane, surface, every point.
- "Point" is most like the old effectors and uses the
effector location as the effector point.
- "Plane" uses the closest point on effectors local xy-plane
as the effector point.
- "Surface" uses the closest point on an effector object's
surface as the effector point.
- "Every Point" uses every point in a mesh effector object
as an effector point.
- The falloff is calculated from this point, so for example
with "surface" shape and "use only negative z axis" it's
possible to apply force only "inside" the effector object.
* Spherical effector is now renamed as "force" as it's no longer
just spherical.
* New effector parameter "flow", which makes the effector act as
surrounding air velocity, so the resulting force is
proportional to the velocity difference of the point and "air
velocity". For example a wind field with flow=1.0 results in
proper non-accelerating wind.
* New effector fields "turbulence", which creates nice random
flow paths, and "drag", which slows the points down.
* Much improved vortex field.
* Effectors can now effect particle rotation as well as location.
* Use full, or only positive/negative z-axis to apply force
(note. the z-axis is the surface normal in the case of
effector shape "surface")
* New "force field" submenu in add menu, which adds an empty
with the chosen effector (curve object for corve guides).
* Other dynamics should be quite easy to add to the effector
system too if wanted.
* "Unified" doesn't mean that force fields give the exact same results for
particles, softbody & cloth, since their final effect depends on many external
factors, like for example the surface area of the effected faces.
Code changes
* Subversion bump for correct handling of global gravity.
* Separate ui py file for common dynamics stuff.
* Particle settings updating is flushed with it's id through
DAG_id_flush_update(..).
Known issues
* Curve guides don't yet have all ui buttons in place, but they
should work none the less.
* Hair dynamics don't yet respect force fields.
Other changes
* Particle emission defaults now to frames 1-200 with life of 50
frames to fill the whole default timeline.
* Many particles drawing related crashes fixed.
* Sometimes particles didn't update on first frame properly.
* Hair with object/group visualization didn't work properly.
* Memory leaks with PointCacheID lists (Genscher, remember to
free pidlists after use :).
2009-09-30 22:10:14 +00:00
|
|
|
{
|
2010-03-26 10:52:55 +00:00
|
|
|
CollisionModifierData *cmd= NULL;
|
Unified effector functionality for particles, cloth and softbody
* Unified scene wide gravity (currently in scene buttons)
instead of each simulation having it's own gravity.
* Weight parameters for all effectors and an effector group
setting.
* Every effector can use noise.
* Most effectors have "shapes" point, plane, surface, every point.
- "Point" is most like the old effectors and uses the
effector location as the effector point.
- "Plane" uses the closest point on effectors local xy-plane
as the effector point.
- "Surface" uses the closest point on an effector object's
surface as the effector point.
- "Every Point" uses every point in a mesh effector object
as an effector point.
- The falloff is calculated from this point, so for example
with "surface" shape and "use only negative z axis" it's
possible to apply force only "inside" the effector object.
* Spherical effector is now renamed as "force" as it's no longer
just spherical.
* New effector parameter "flow", which makes the effector act as
surrounding air velocity, so the resulting force is
proportional to the velocity difference of the point and "air
velocity". For example a wind field with flow=1.0 results in
proper non-accelerating wind.
* New effector fields "turbulence", which creates nice random
flow paths, and "drag", which slows the points down.
* Much improved vortex field.
* Effectors can now effect particle rotation as well as location.
* Use full, or only positive/negative z-axis to apply force
(note. the z-axis is the surface normal in the case of
effector shape "surface")
* New "force field" submenu in add menu, which adds an empty
with the chosen effector (curve object for corve guides).
* Other dynamics should be quite easy to add to the effector
system too if wanted.
* "Unified" doesn't mean that force fields give the exact same results for
particles, softbody & cloth, since their final effect depends on many external
factors, like for example the surface area of the effected faces.
Code changes
* Subversion bump for correct handling of global gravity.
* Separate ui py file for common dynamics stuff.
* Particle settings updating is flushed with it's id through
DAG_id_flush_update(..).
Known issues
* Curve guides don't yet have all ui buttons in place, but they
should work none the less.
* Hair dynamics don't yet respect force fields.
Other changes
* Particle emission defaults now to frames 1-200 with life of 50
frames to fill the whole default timeline.
* Many particles drawing related crashes fixed.
* Sometimes particles didn't update on first frame properly.
* Hair with object/group visualization didn't work properly.
* Memory leaks with PointCacheID lists (Genscher, remember to
free pidlists after use :).
2009-09-30 22:10:14 +00:00
|
|
|
ColliderCache *col;
|
|
|
|
|
|
2012-03-24 06:18:31 +00:00
|
|
|
if (ob == self)
|
2010-03-26 10:52:55 +00:00
|
|
|
return;
|
Unified effector functionality for particles, cloth and softbody
* Unified scene wide gravity (currently in scene buttons)
instead of each simulation having it's own gravity.
* Weight parameters for all effectors and an effector group
setting.
* Every effector can use noise.
* Most effectors have "shapes" point, plane, surface, every point.
- "Point" is most like the old effectors and uses the
effector location as the effector point.
- "Plane" uses the closest point on effectors local xy-plane
as the effector point.
- "Surface" uses the closest point on an effector object's
surface as the effector point.
- "Every Point" uses every point in a mesh effector object
as an effector point.
- The falloff is calculated from this point, so for example
with "surface" shape and "use only negative z axis" it's
possible to apply force only "inside" the effector object.
* Spherical effector is now renamed as "force" as it's no longer
just spherical.
* New effector parameter "flow", which makes the effector act as
surrounding air velocity, so the resulting force is
proportional to the velocity difference of the point and "air
velocity". For example a wind field with flow=1.0 results in
proper non-accelerating wind.
* New effector fields "turbulence", which creates nice random
flow paths, and "drag", which slows the points down.
* Much improved vortex field.
* Effectors can now effect particle rotation as well as location.
* Use full, or only positive/negative z-axis to apply force
(note. the z-axis is the surface normal in the case of
effector shape "surface")
* New "force field" submenu in add menu, which adds an empty
with the chosen effector (curve object for corve guides).
* Other dynamics should be quite easy to add to the effector
system too if wanted.
* "Unified" doesn't mean that force fields give the exact same results for
particles, softbody & cloth, since their final effect depends on many external
factors, like for example the surface area of the effected faces.
Code changes
* Subversion bump for correct handling of global gravity.
* Separate ui py file for common dynamics stuff.
* Particle settings updating is flushed with it's id through
DAG_id_flush_update(..).
Known issues
* Curve guides don't yet have all ui buttons in place, but they
should work none the less.
* Hair dynamics don't yet respect force fields.
Other changes
* Particle emission defaults now to frames 1-200 with life of 50
frames to fill the whole default timeline.
* Many particles drawing related crashes fixed.
* Sometimes particles didn't update on first frame properly.
* Hair with object/group visualization didn't work properly.
* Memory leaks with PointCacheID lists (Genscher, remember to
free pidlists after use :).
2009-09-30 22:10:14 +00:00
|
|
|
|
2012-03-24 06:18:31 +00:00
|
|
|
if (ob->pd && ob->pd->deflect)
|
2010-03-26 10:52:55 +00:00
|
|
|
cmd =(CollisionModifierData *)modifiers_findByType(ob, eModifierType_Collision);
|
|
|
|
|
|
2012-10-21 05:46:41 +00:00
|
|
|
if (cmd && cmd->bvhtree) {
|
2012-03-24 06:18:31 +00:00
|
|
|
if (*objs == NULL)
|
2010-03-26 10:52:55 +00:00
|
|
|
*objs = MEM_callocN(sizeof(ListBase), "ColliderCache array");
|
|
|
|
|
|
|
|
|
|
col = MEM_callocN(sizeof(ColliderCache), "ColliderCache");
|
|
|
|
|
col->ob = ob;
|
|
|
|
|
col->collmd = cmd;
|
|
|
|
|
/* make sure collider is properly set up */
|
|
|
|
|
collision_move_object(cmd, 1.0, 0.0);
|
|
|
|
|
BLI_addtail(*objs, col);
|
|
|
|
|
}
|
Unified effector functionality for particles, cloth and softbody
* Unified scene wide gravity (currently in scene buttons)
instead of each simulation having it's own gravity.
* Weight parameters for all effectors and an effector group
setting.
* Every effector can use noise.
* Most effectors have "shapes" point, plane, surface, every point.
- "Point" is most like the old effectors and uses the
effector location as the effector point.
- "Plane" uses the closest point on effectors local xy-plane
as the effector point.
- "Surface" uses the closest point on an effector object's
surface as the effector point.
- "Every Point" uses every point in a mesh effector object
as an effector point.
- The falloff is calculated from this point, so for example
with "surface" shape and "use only negative z axis" it's
possible to apply force only "inside" the effector object.
* Spherical effector is now renamed as "force" as it's no longer
just spherical.
* New effector parameter "flow", which makes the effector act as
surrounding air velocity, so the resulting force is
proportional to the velocity difference of the point and "air
velocity". For example a wind field with flow=1.0 results in
proper non-accelerating wind.
* New effector fields "turbulence", which creates nice random
flow paths, and "drag", which slows the points down.
* Much improved vortex field.
* Effectors can now effect particle rotation as well as location.
* Use full, or only positive/negative z-axis to apply force
(note. the z-axis is the surface normal in the case of
effector shape "surface")
* New "force field" submenu in add menu, which adds an empty
with the chosen effector (curve object for corve guides).
* Other dynamics should be quite easy to add to the effector
system too if wanted.
* "Unified" doesn't mean that force fields give the exact same results for
particles, softbody & cloth, since their final effect depends on many external
factors, like for example the surface area of the effected faces.
Code changes
* Subversion bump for correct handling of global gravity.
* Separate ui py file for common dynamics stuff.
* Particle settings updating is flushed with it's id through
DAG_id_flush_update(..).
Known issues
* Curve guides don't yet have all ui buttons in place, but they
should work none the less.
* Hair dynamics don't yet respect force fields.
Other changes
* Particle emission defaults now to frames 1-200 with life of 50
frames to fill the whole default timeline.
* Many particles drawing related crashes fixed.
* Sometimes particles didn't update on first frame properly.
* Hair with object/group visualization didn't work properly.
* Memory leaks with PointCacheID lists (Genscher, remember to
free pidlists after use :).
2009-09-30 22:10:14 +00:00
|
|
|
|
2010-03-26 10:52:55 +00:00
|
|
|
/* objects in dupli groups, one level only for now */
|
2012-03-24 06:18:31 +00:00
|
|
|
if (ob->dup_group && level == 0) {
|
2010-03-26 10:52:55 +00:00
|
|
|
GroupObject *go;
|
|
|
|
|
Group *group= ob->dup_group;
|
Unified effector functionality for particles, cloth and softbody
* Unified scene wide gravity (currently in scene buttons)
instead of each simulation having it's own gravity.
* Weight parameters for all effectors and an effector group
setting.
* Every effector can use noise.
* Most effectors have "shapes" point, plane, surface, every point.
- "Point" is most like the old effectors and uses the
effector location as the effector point.
- "Plane" uses the closest point on effectors local xy-plane
as the effector point.
- "Surface" uses the closest point on an effector object's
surface as the effector point.
- "Every Point" uses every point in a mesh effector object
as an effector point.
- The falloff is calculated from this point, so for example
with "surface" shape and "use only negative z axis" it's
possible to apply force only "inside" the effector object.
* Spherical effector is now renamed as "force" as it's no longer
just spherical.
* New effector parameter "flow", which makes the effector act as
surrounding air velocity, so the resulting force is
proportional to the velocity difference of the point and "air
velocity". For example a wind field with flow=1.0 results in
proper non-accelerating wind.
* New effector fields "turbulence", which creates nice random
flow paths, and "drag", which slows the points down.
* Much improved vortex field.
* Effectors can now effect particle rotation as well as location.
* Use full, or only positive/negative z-axis to apply force
(note. the z-axis is the surface normal in the case of
effector shape "surface")
* New "force field" submenu in add menu, which adds an empty
with the chosen effector (curve object for corve guides).
* Other dynamics should be quite easy to add to the effector
system too if wanted.
* "Unified" doesn't mean that force fields give the exact same results for
particles, softbody & cloth, since their final effect depends on many external
factors, like for example the surface area of the effected faces.
Code changes
* Subversion bump for correct handling of global gravity.
* Separate ui py file for common dynamics stuff.
* Particle settings updating is flushed with it's id through
DAG_id_flush_update(..).
Known issues
* Curve guides don't yet have all ui buttons in place, but they
should work none the less.
* Hair dynamics don't yet respect force fields.
Other changes
* Particle emission defaults now to frames 1-200 with life of 50
frames to fill the whole default timeline.
* Many particles drawing related crashes fixed.
* Sometimes particles didn't update on first frame properly.
* Hair with object/group visualization didn't work properly.
* Memory leaks with PointCacheID lists (Genscher, remember to
free pidlists after use :).
2009-09-30 22:10:14 +00:00
|
|
|
|
2010-03-26 10:52:55 +00:00
|
|
|
/* add objects */
|
2012-03-24 06:18:31 +00:00
|
|
|
for (go= group->gobject.first; go; go= go->next)
|
2010-03-26 10:52:55 +00:00
|
|
|
add_collider_cache_object(objs, go->ob, self, level+1);
|
Unified effector functionality for particles, cloth and softbody
* Unified scene wide gravity (currently in scene buttons)
instead of each simulation having it's own gravity.
* Weight parameters for all effectors and an effector group
setting.
* Every effector can use noise.
* Most effectors have "shapes" point, plane, surface, every point.
- "Point" is most like the old effectors and uses the
effector location as the effector point.
- "Plane" uses the closest point on effectors local xy-plane
as the effector point.
- "Surface" uses the closest point on an effector object's
surface as the effector point.
- "Every Point" uses every point in a mesh effector object
as an effector point.
- The falloff is calculated from this point, so for example
with "surface" shape and "use only negative z axis" it's
possible to apply force only "inside" the effector object.
* Spherical effector is now renamed as "force" as it's no longer
just spherical.
* New effector parameter "flow", which makes the effector act as
surrounding air velocity, so the resulting force is
proportional to the velocity difference of the point and "air
velocity". For example a wind field with flow=1.0 results in
proper non-accelerating wind.
* New effector fields "turbulence", which creates nice random
flow paths, and "drag", which slows the points down.
* Much improved vortex field.
* Effectors can now effect particle rotation as well as location.
* Use full, or only positive/negative z-axis to apply force
(note. the z-axis is the surface normal in the case of
effector shape "surface")
* New "force field" submenu in add menu, which adds an empty
with the chosen effector (curve object for corve guides).
* Other dynamics should be quite easy to add to the effector
system too if wanted.
* "Unified" doesn't mean that force fields give the exact same results for
particles, softbody & cloth, since their final effect depends on many external
factors, like for example the surface area of the effected faces.
Code changes
* Subversion bump for correct handling of global gravity.
* Separate ui py file for common dynamics stuff.
* Particle settings updating is flushed with it's id through
DAG_id_flush_update(..).
Known issues
* Curve guides don't yet have all ui buttons in place, but they
should work none the less.
* Hair dynamics don't yet respect force fields.
Other changes
* Particle emission defaults now to frames 1-200 with life of 50
frames to fill the whole default timeline.
* Many particles drawing related crashes fixed.
* Sometimes particles didn't update on first frame properly.
* Hair with object/group visualization didn't work properly.
* Memory leaks with PointCacheID lists (Genscher, remember to
free pidlists after use :).
2009-09-30 22:10:14 +00:00
|
|
|
}
|
2010-03-26 10:52:55 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
ListBase *get_collider_cache(Scene *scene, Object *self, Group *group)
|
|
|
|
|
{
|
|
|
|
|
GroupObject *go;
|
|
|
|
|
ListBase *objs= NULL;
|
|
|
|
|
|
|
|
|
|
/* add object in same layer in scene */
|
2012-03-24 06:18:31 +00:00
|
|
|
if (group) {
|
|
|
|
|
for (go= group->gobject.first; go; go= go->next)
|
2010-03-26 10:52:55 +00:00
|
|
|
add_collider_cache_object(&objs, go->ob, self, 0);
|
|
|
|
|
}
|
|
|
|
|
else {
|
2010-12-17 15:37:59 +00:00
|
|
|
Scene *sce_iter;
|
2010-06-18 14:14:13 +00:00
|
|
|
Base *base;
|
|
|
|
|
|
|
|
|
|
/* add objects in same layer in scene */
|
2012-03-24 06:18:31 +00:00
|
|
|
for (SETLOOPER(scene, sce_iter, base)) {
|
|
|
|
|
if (!self || (base->lay & self->lay))
|
2010-03-26 10:52:55 +00:00
|
|
|
add_collider_cache_object(&objs, base->object, self, 0);
|
2010-06-18 14:14:13 +00:00
|
|
|
|
|
|
|
|
}
|
2010-03-26 10:52:55 +00:00
|
|
|
}
|
|
|
|
|
|
Unified effector functionality for particles, cloth and softbody
* Unified scene wide gravity (currently in scene buttons)
instead of each simulation having it's own gravity.
* Weight parameters for all effectors and an effector group
setting.
* Every effector can use noise.
* Most effectors have "shapes" point, plane, surface, every point.
- "Point" is most like the old effectors and uses the
effector location as the effector point.
- "Plane" uses the closest point on effectors local xy-plane
as the effector point.
- "Surface" uses the closest point on an effector object's
surface as the effector point.
- "Every Point" uses every point in a mesh effector object
as an effector point.
- The falloff is calculated from this point, so for example
with "surface" shape and "use only negative z axis" it's
possible to apply force only "inside" the effector object.
* Spherical effector is now renamed as "force" as it's no longer
just spherical.
* New effector parameter "flow", which makes the effector act as
surrounding air velocity, so the resulting force is
proportional to the velocity difference of the point and "air
velocity". For example a wind field with flow=1.0 results in
proper non-accelerating wind.
* New effector fields "turbulence", which creates nice random
flow paths, and "drag", which slows the points down.
* Much improved vortex field.
* Effectors can now effect particle rotation as well as location.
* Use full, or only positive/negative z-axis to apply force
(note. the z-axis is the surface normal in the case of
effector shape "surface")
* New "force field" submenu in add menu, which adds an empty
with the chosen effector (curve object for corve guides).
* Other dynamics should be quite easy to add to the effector
system too if wanted.
* "Unified" doesn't mean that force fields give the exact same results for
particles, softbody & cloth, since their final effect depends on many external
factors, like for example the surface area of the effected faces.
Code changes
* Subversion bump for correct handling of global gravity.
* Separate ui py file for common dynamics stuff.
* Particle settings updating is flushed with it's id through
DAG_id_flush_update(..).
Known issues
* Curve guides don't yet have all ui buttons in place, but they
should work none the less.
* Hair dynamics don't yet respect force fields.
Other changes
* Particle emission defaults now to frames 1-200 with life of 50
frames to fill the whole default timeline.
* Many particles drawing related crashes fixed.
* Sometimes particles didn't update on first frame properly.
* Hair with object/group visualization didn't work properly.
* Memory leaks with PointCacheID lists (Genscher, remember to
free pidlists after use :).
2009-09-30 22:10:14 +00:00
|
|
|
return objs;
|
|
|
|
|
}
|
2010-03-26 10:52:55 +00:00
|
|
|
|
Unified effector functionality for particles, cloth and softbody
* Unified scene wide gravity (currently in scene buttons)
instead of each simulation having it's own gravity.
* Weight parameters for all effectors and an effector group
setting.
* Every effector can use noise.
* Most effectors have "shapes" point, plane, surface, every point.
- "Point" is most like the old effectors and uses the
effector location as the effector point.
- "Plane" uses the closest point on effectors local xy-plane
as the effector point.
- "Surface" uses the closest point on an effector object's
surface as the effector point.
- "Every Point" uses every point in a mesh effector object
as an effector point.
- The falloff is calculated from this point, so for example
with "surface" shape and "use only negative z axis" it's
possible to apply force only "inside" the effector object.
* Spherical effector is now renamed as "force" as it's no longer
just spherical.
* New effector parameter "flow", which makes the effector act as
surrounding air velocity, so the resulting force is
proportional to the velocity difference of the point and "air
velocity". For example a wind field with flow=1.0 results in
proper non-accelerating wind.
* New effector fields "turbulence", which creates nice random
flow paths, and "drag", which slows the points down.
* Much improved vortex field.
* Effectors can now effect particle rotation as well as location.
* Use full, or only positive/negative z-axis to apply force
(note. the z-axis is the surface normal in the case of
effector shape "surface")
* New "force field" submenu in add menu, which adds an empty
with the chosen effector (curve object for corve guides).
* Other dynamics should be quite easy to add to the effector
system too if wanted.
* "Unified" doesn't mean that force fields give the exact same results for
particles, softbody & cloth, since their final effect depends on many external
factors, like for example the surface area of the effected faces.
Code changes
* Subversion bump for correct handling of global gravity.
* Separate ui py file for common dynamics stuff.
* Particle settings updating is flushed with it's id through
DAG_id_flush_update(..).
Known issues
* Curve guides don't yet have all ui buttons in place, but they
should work none the less.
* Hair dynamics don't yet respect force fields.
Other changes
* Particle emission defaults now to frames 1-200 with life of 50
frames to fill the whole default timeline.
* Many particles drawing related crashes fixed.
* Sometimes particles didn't update on first frame properly.
* Hair with object/group visualization didn't work properly.
* Memory leaks with PointCacheID lists (Genscher, remember to
free pidlists after use :).
2009-09-30 22:10:14 +00:00
|
|
|
void free_collider_cache(ListBase **colliders)
|
|
|
|
|
{
|
2012-03-24 06:18:31 +00:00
|
|
|
if (*colliders) {
|
Unified effector functionality for particles, cloth and softbody
* Unified scene wide gravity (currently in scene buttons)
instead of each simulation having it's own gravity.
* Weight parameters for all effectors and an effector group
setting.
* Every effector can use noise.
* Most effectors have "shapes" point, plane, surface, every point.
- "Point" is most like the old effectors and uses the
effector location as the effector point.
- "Plane" uses the closest point on effectors local xy-plane
as the effector point.
- "Surface" uses the closest point on an effector object's
surface as the effector point.
- "Every Point" uses every point in a mesh effector object
as an effector point.
- The falloff is calculated from this point, so for example
with "surface" shape and "use only negative z axis" it's
possible to apply force only "inside" the effector object.
* Spherical effector is now renamed as "force" as it's no longer
just spherical.
* New effector parameter "flow", which makes the effector act as
surrounding air velocity, so the resulting force is
proportional to the velocity difference of the point and "air
velocity". For example a wind field with flow=1.0 results in
proper non-accelerating wind.
* New effector fields "turbulence", which creates nice random
flow paths, and "drag", which slows the points down.
* Much improved vortex field.
* Effectors can now effect particle rotation as well as location.
* Use full, or only positive/negative z-axis to apply force
(note. the z-axis is the surface normal in the case of
effector shape "surface")
* New "force field" submenu in add menu, which adds an empty
with the chosen effector (curve object for corve guides).
* Other dynamics should be quite easy to add to the effector
system too if wanted.
* "Unified" doesn't mean that force fields give the exact same results for
particles, softbody & cloth, since their final effect depends on many external
factors, like for example the surface area of the effected faces.
Code changes
* Subversion bump for correct handling of global gravity.
* Separate ui py file for common dynamics stuff.
* Particle settings updating is flushed with it's id through
DAG_id_flush_update(..).
Known issues
* Curve guides don't yet have all ui buttons in place, but they
should work none the less.
* Hair dynamics don't yet respect force fields.
Other changes
* Particle emission defaults now to frames 1-200 with life of 50
frames to fill the whole default timeline.
* Many particles drawing related crashes fixed.
* Sometimes particles didn't update on first frame properly.
* Hair with object/group visualization didn't work properly.
* Memory leaks with PointCacheID lists (Genscher, remember to
free pidlists after use :).
2009-09-30 22:10:14 +00:00
|
|
|
BLI_freelistN(*colliders);
|
|
|
|
|
MEM_freeN(*colliders);
|
|
|
|
|
*colliders = NULL;
|
|
|
|
|
}
|
|
|
|
|
}
|
2010-03-26 10:52:55 +00:00
|
|
|
|
2011-05-01 21:39:13 +00:00
|
|
|
|
|
|
|
|
static void cloth_bvh_objcollisions_nearcheck ( ClothModifierData * clmd, CollisionModifierData *collmd,
|
|
|
|
|
CollPair **collisions, CollPair **collisions_index, int numresult, BVHTreeOverlap *overlap, double dt)
|
2008-07-02 20:28:49 +00:00
|
|
|
{
|
|
|
|
|
int i;
|
|
|
|
|
|
2012-06-17 09:58:26 +00:00
|
|
|
*collisions = (CollPair *) MEM_mallocN(sizeof(CollPair) * numresult * 64, "collision array" ); //*4 since cloth_collision_static can return more than 1 collision
|
2008-07-02 20:28:49 +00:00
|
|
|
*collisions_index = *collisions;
|
2011-05-01 21:39:13 +00:00
|
|
|
|
2012-04-28 06:31:57 +00:00
|
|
|
for ( i = 0; i < numresult; i++ ) {
|
2012-04-24 22:50:49 +00:00
|
|
|
*collisions_index = cloth_collision ( (ModifierData *)clmd, (ModifierData *)collmd,
|
2012-06-17 09:58:26 +00:00
|
|
|
overlap+i, *collisions_index, dt );
|
2011-05-01 21:39:13 +00:00
|
|
|
}
|
2008-07-02 20:28:49 +00:00
|
|
|
}
|
2008-04-08 12:55:35 +00:00
|
|
|
|
2009-09-14 16:52:06 +00:00
|
|
|
static int cloth_bvh_objcollisions_resolve ( ClothModifierData * clmd, CollisionModifierData *collmd, CollPair *collisions, CollPair *collisions_index)
|
2008-07-02 20:28:49 +00:00
|
|
|
{
|
|
|
|
|
Cloth *cloth = clmd->clothObject;
|
2012-04-29 15:47:02 +00:00
|
|
|
int i=0, j = 0, /*numfaces = 0, */ numverts = 0;
|
2008-07-02 20:28:49 +00:00
|
|
|
ClothVertex *verts = NULL;
|
|
|
|
|
int ret = 0;
|
|
|
|
|
int result = 0;
|
|
|
|
|
|
|
|
|
|
numverts = clmd->clothObject->numverts;
|
|
|
|
|
verts = cloth->verts;
|
|
|
|
|
|
2008-03-03 19:02:01 +00:00
|
|
|
// process all collisions (calculate impulses, TODO: also repulses if distance too short)
|
|
|
|
|
result = 1;
|
2012-05-15 11:14:50 +00:00
|
|
|
for ( j = 0; j < 2; j++ ) { /* 5 is just a value that ensures convergence */
|
2008-03-03 19:02:01 +00:00
|
|
|
result = 0;
|
2008-04-08 12:55:35 +00:00
|
|
|
|
2012-04-28 06:31:57 +00:00
|
|
|
if ( collmd->bvhtree ) {
|
2008-05-07 20:42:16 +00:00
|
|
|
result += cloth_collision_response_static ( clmd, collmd, collisions, collisions_index );
|
2012-05-15 11:14:50 +00:00
|
|
|
|
2008-05-14 16:09:56 +00:00
|
|
|
// apply impulses in parallel
|
2012-04-28 06:31:57 +00:00
|
|
|
if (result) {
|
|
|
|
|
for (i = 0; i < numverts; i++) {
|
2008-05-14 16:09:56 +00:00
|
|
|
// calculate "velocities" (just xnew = xold + v; no dt in v)
|
2012-04-28 06:31:57 +00:00
|
|
|
if (verts[i].impulse_count) {
|
2012-05-15 11:14:50 +00:00
|
|
|
// VECADDMUL ( verts[i].tv, verts[i].impulse, 1.0f / verts[i].impulse_count );
|
|
|
|
|
VECADD ( verts[i].tv, verts[i].tv, verts[i].impulse);
|
|
|
|
|
zero_v3(verts[i].impulse);
|
2008-05-14 16:09:56 +00:00
|
|
|
verts[i].impulse_count = 0;
|
2008-05-26 09:39:32 +00:00
|
|
|
|
2008-05-14 16:09:56 +00:00
|
|
|
ret++;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
2008-05-07 20:42:16 +00:00
|
|
|
}
|
2012-05-15 11:14:50 +00:00
|
|
|
|
2012-05-22 22:03:41 +00:00
|
|
|
if (!result) {
|
2012-05-15 11:14:50 +00:00
|
|
|
break;
|
2012-05-22 22:03:41 +00:00
|
|
|
}
|
2008-03-03 19:02:01 +00:00
|
|
|
}
|
|
|
|
|
return ret;
|
2008-02-12 11:04:58 +00:00
|
|
|
}
|
|
|
|
|
|
2008-01-29 21:01:12 +00:00
|
|
|
// cloth - object collisions
|
2012-04-29 17:11:40 +00:00
|
|
|
int cloth_bvh_objcollision(Object *ob, ClothModifierData * clmd, float step, float dt )
|
2008-01-29 21:01:12 +00:00
|
|
|
{
|
2010-02-24 18:06:51 +00:00
|
|
|
Cloth *cloth= clmd->clothObject;
|
|
|
|
|
BVHTree *cloth_bvh= cloth->bvhtree;
|
2011-09-28 15:22:13 +00:00
|
|
|
unsigned int i=0, /* numfaces = 0, */ /* UNUSED */ numverts = 0, k, l, j;
|
2008-07-02 20:28:49 +00:00
|
|
|
int rounds = 0; // result counts applied collisions; ic is for debug output;
|
2008-01-29 21:01:12 +00:00
|
|
|
ClothVertex *verts = NULL;
|
2008-05-26 10:36:14 +00:00
|
|
|
int ret = 0, ret2 = 0;
|
2009-09-21 21:19:58 +00:00
|
|
|
Object **collobjs = NULL;
|
2010-10-21 08:32:53 +00:00
|
|
|
unsigned int numcollobj = 0;
|
2008-01-29 21:01:12 +00:00
|
|
|
|
2010-02-24 18:06:51 +00:00
|
|
|
if ((clmd->sim_parms->flags & CLOTH_SIMSETTINGS_FLAG_COLLOBJ) || cloth_bvh==NULL)
|
2008-01-29 21:01:12 +00:00
|
|
|
return 0;
|
2011-05-01 21:39:13 +00:00
|
|
|
|
2008-01-29 21:01:12 +00:00
|
|
|
verts = cloth->verts;
|
2011-09-28 15:22:13 +00:00
|
|
|
/* numfaces = cloth->numfaces; */ /* UNUSED */
|
2010-02-24 18:06:51 +00:00
|
|
|
numverts = cloth->numverts;
|
2008-04-08 12:55:35 +00:00
|
|
|
|
2008-01-29 21:01:12 +00:00
|
|
|
////////////////////////////////////////////////////////////
|
|
|
|
|
// static collisions
|
|
|
|
|
////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
|
|
// update cloth bvh
|
2008-05-14 16:09:56 +00:00
|
|
|
bvhtree_update_from_cloth ( clmd, 1 ); // 0 means STATIC, 1 means MOVING (see later in this function)
|
2008-05-23 20:20:14 +00:00
|
|
|
bvhselftree_update_from_cloth ( clmd, 0 ); // 0 means STATIC, 1 means MOVING (see later in this function)
|
2008-07-02 20:28:49 +00:00
|
|
|
|
2012-03-20 04:15:41 +00:00
|
|
|
collobjs = get_collisionobjects(clmd->scene, ob, clmd->coll_parms->group, &numcollobj, eModifierType_Collision);
|
2008-07-02 20:28:49 +00:00
|
|
|
|
2012-03-24 06:18:31 +00:00
|
|
|
if (!collobjs)
|
2008-07-02 20:28:49 +00:00
|
|
|
return 0;
|
2008-04-08 12:55:35 +00:00
|
|
|
|
2012-05-15 11:14:50 +00:00
|
|
|
/* move object to position (step) in time */
|
|
|
|
|
for (i = 0; i < numcollobj; i++) {
|
|
|
|
|
Object *collob= collobjs[i];
|
|
|
|
|
CollisionModifierData *collmd = (CollisionModifierData*)modifiers_findByType(collob, eModifierType_Collision);
|
|
|
|
|
|
|
|
|
|
if (!collmd->bvhtree)
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
/* move object to position (step) in time */
|
|
|
|
|
collision_move_object ( collmd, step + dt, step );
|
|
|
|
|
}
|
|
|
|
|
|
2012-10-21 05:46:41 +00:00
|
|
|
do {
|
2008-07-02 20:28:49 +00:00
|
|
|
CollPair **collisions, **collisions_index;
|
|
|
|
|
|
2008-05-26 10:36:14 +00:00
|
|
|
ret2 = 0;
|
2008-04-08 12:55:35 +00:00
|
|
|
|
2012-04-29 15:47:02 +00:00
|
|
|
collisions = MEM_callocN(sizeof(CollPair *) *numcollobj, "CollPair");
|
|
|
|
|
collisions_index = MEM_callocN(sizeof(CollPair *) *numcollobj, "CollPair");
|
2008-07-02 20:28:49 +00:00
|
|
|
|
2008-01-29 21:01:12 +00:00
|
|
|
// check all collision objects
|
2012-04-28 06:31:57 +00:00
|
|
|
for (i = 0; i < numcollobj; i++) {
|
2009-09-21 21:19:58 +00:00
|
|
|
Object *collob= collobjs[i];
|
|
|
|
|
CollisionModifierData *collmd = (CollisionModifierData*)modifiers_findByType(collob, eModifierType_Collision);
|
2008-07-02 20:28:49 +00:00
|
|
|
BVHTreeOverlap *overlap = NULL;
|
2010-10-21 22:45:54 +00:00
|
|
|
unsigned int result = 0;
|
2008-07-02 20:28:49 +00:00
|
|
|
|
2012-03-24 06:18:31 +00:00
|
|
|
if (!collmd->bvhtree)
|
2008-08-18 14:41:24 +00:00
|
|
|
continue;
|
|
|
|
|
|
2008-07-02 20:28:49 +00:00
|
|
|
/* search for overlapping collision pairs */
|
|
|
|
|
overlap = BLI_bvhtree_overlap ( cloth_bvh, collmd->bvhtree, &result );
|
|
|
|
|
|
|
|
|
|
// go to next object if no overlap is there
|
2012-03-24 06:18:31 +00:00
|
|
|
if ( result && overlap ) {
|
2010-05-25 13:33:59 +00:00
|
|
|
/* check if collisions really happen (costly near check) */
|
2011-05-01 21:39:13 +00:00
|
|
|
cloth_bvh_objcollisions_nearcheck ( clmd, collmd, &collisions[i],
|
|
|
|
|
&collisions_index[i], result, overlap, dt/(float)clmd->coll_parms->loop_count);
|
2008-07-02 20:28:49 +00:00
|
|
|
|
2010-05-25 13:33:59 +00:00
|
|
|
// resolve nearby collisions
|
|
|
|
|
ret += cloth_bvh_objcollisions_resolve ( clmd, collmd, collisions[i], collisions_index[i]);
|
|
|
|
|
ret2 += ret;
|
|
|
|
|
}
|
|
|
|
|
|
2008-07-02 20:28:49 +00:00
|
|
|
if ( overlap )
|
|
|
|
|
MEM_freeN ( overlap );
|
2008-01-29 21:01:12 +00:00
|
|
|
}
|
|
|
|
|
rounds++;
|
2008-07-02 20:28:49 +00:00
|
|
|
|
2012-04-28 06:31:57 +00:00
|
|
|
for (i = 0; i < numcollobj; i++) {
|
2008-07-02 20:28:49 +00:00
|
|
|
if ( collisions[i] ) MEM_freeN ( collisions[i] );
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
MEM_freeN(collisions);
|
|
|
|
|
MEM_freeN(collisions_index);
|
2008-04-08 12:55:35 +00:00
|
|
|
|
2008-02-12 12:02:39 +00:00
|
|
|
////////////////////////////////////////////////////////////
|
|
|
|
|
// update positions
|
|
|
|
|
// this is needed for bvh_calc_DOP_hull_moving() [kdop.c]
|
|
|
|
|
////////////////////////////////////////////////////////////
|
2008-04-08 12:55:35 +00:00
|
|
|
|
2008-02-12 12:02:39 +00:00
|
|
|
// verts come from clmd
|
2012-04-28 06:31:57 +00:00
|
|
|
for ( i = 0; i < numverts; i++ ) {
|
|
|
|
|
if ( clmd->sim_parms->flags & CLOTH_SIMSETTINGS_FLAG_GOAL ) {
|
|
|
|
|
if ( verts [i].flags & CLOTH_VERT_FLAG_PINNED ) {
|
2008-02-12 12:02:39 +00:00
|
|
|
continue;
|
|
|
|
|
}
|
2008-01-29 21:01:12 +00:00
|
|
|
}
|
2008-04-08 12:55:35 +00:00
|
|
|
|
|
|
|
|
VECADD ( verts[i].tx, verts[i].txold, verts[i].tv );
|
2008-01-29 21:01:12 +00:00
|
|
|
}
|
2008-02-12 12:02:39 +00:00
|
|
|
////////////////////////////////////////////////////////////
|
2008-08-03 01:41:57 +00:00
|
|
|
|
2008-07-02 20:28:49 +00:00
|
|
|
|
2008-02-12 12:02:39 +00:00
|
|
|
////////////////////////////////////////////////////////////
|
|
|
|
|
// Test on *simple* selfcollisions
|
|
|
|
|
////////////////////////////////////////////////////////////
|
2012-04-28 06:31:57 +00:00
|
|
|
if ( clmd->coll_parms->flags & CLOTH_COLLSETTINGS_FLAG_SELF ) {
|
|
|
|
|
for (l = 0; l < (unsigned int)clmd->coll_parms->self_loop_count; l++) {
|
2012-07-06 23:56:59 +00:00
|
|
|
/* TODO: add coll quality rounds again */
|
2008-08-03 01:41:57 +00:00
|
|
|
BVHTreeOverlap *overlap = NULL;
|
2010-10-21 08:32:53 +00:00
|
|
|
unsigned int result = 0;
|
2008-08-03 01:41:57 +00:00
|
|
|
|
|
|
|
|
// collisions = 1;
|
|
|
|
|
verts = cloth->verts; // needed for openMP
|
|
|
|
|
|
2011-09-28 15:22:13 +00:00
|
|
|
/* numfaces = cloth->numfaces; */ /* UNUSED */
|
2010-02-24 18:06:51 +00:00
|
|
|
numverts = cloth->numverts;
|
2008-08-03 01:41:57 +00:00
|
|
|
|
|
|
|
|
verts = cloth->verts;
|
|
|
|
|
|
2012-04-28 06:31:57 +00:00
|
|
|
if ( cloth->bvhselftree ) {
|
|
|
|
|
// search for overlapping collision pairs
|
2008-08-03 01:41:57 +00:00
|
|
|
overlap = BLI_bvhtree_overlap ( cloth->bvhselftree, cloth->bvhselftree, &result );
|
|
|
|
|
|
|
|
|
|
// #pragma omp parallel for private(k, i, j) schedule(static)
|
2012-04-28 06:31:57 +00:00
|
|
|
for ( k = 0; k < result; k++ ) {
|
2008-08-03 01:41:57 +00:00
|
|
|
float temp[3];
|
|
|
|
|
float length = 0;
|
|
|
|
|
float mindistance;
|
|
|
|
|
|
|
|
|
|
i = overlap[k].indexA;
|
|
|
|
|
j = overlap[k].indexB;
|
|
|
|
|
|
|
|
|
|
mindistance = clmd->coll_parms->selfepsilon* ( cloth->verts[i].avg_spring_len + cloth->verts[j].avg_spring_len );
|
|
|
|
|
|
2012-04-28 06:31:57 +00:00
|
|
|
if ( clmd->sim_parms->flags & CLOTH_SIMSETTINGS_FLAG_GOAL ) {
|
2012-04-21 15:11:03 +00:00
|
|
|
if ( ( cloth->verts [i].flags & CLOTH_VERT_FLAG_PINNED ) &&
|
|
|
|
|
( cloth->verts [j].flags & CLOTH_VERT_FLAG_PINNED ) )
|
2008-08-03 01:41:57 +00:00
|
|
|
{
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
}
|
2012-06-06 13:30:05 +00:00
|
|
|
|
2012-06-23 23:22:19 +00:00
|
|
|
if ((cloth->verts[i].flags & CLOTH_VERT_FLAG_NOSELFCOLL) ||
|
|
|
|
|
(cloth->verts[j].flags & CLOTH_VERT_FLAG_NOSELFCOLL))
|
|
|
|
|
{
|
2012-06-06 13:30:05 +00:00
|
|
|
continue;
|
2012-06-23 23:22:19 +00:00
|
|
|
}
|
2008-08-03 01:41:57 +00:00
|
|
|
|
2012-04-29 17:11:40 +00:00
|
|
|
sub_v3_v3v3(temp, verts[i].tx, verts[j].tx);
|
2008-08-03 01:41:57 +00:00
|
|
|
|
|
|
|
|
if ( ( ABS ( temp[0] ) > mindistance ) || ( ABS ( temp[1] ) > mindistance ) || ( ABS ( temp[2] ) > mindistance ) ) continue;
|
|
|
|
|
|
|
|
|
|
// check for adjacent points (i must be smaller j)
|
2012-04-28 06:31:57 +00:00
|
|
|
if ( BLI_edgehash_haskey ( cloth->edgehash, MIN2(i, j), MAX2(i, j) ) ) {
|
2008-08-03 01:41:57 +00:00
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
|
2012-04-29 17:11:40 +00:00
|
|
|
length = normalize_v3(temp );
|
2008-08-03 01:41:57 +00:00
|
|
|
|
2012-04-28 06:31:57 +00:00
|
|
|
if ( length < mindistance ) {
|
2008-08-03 01:41:57 +00:00
|
|
|
float correction = mindistance - length;
|
|
|
|
|
|
2012-04-28 06:31:57 +00:00
|
|
|
if ( cloth->verts [i].flags & CLOTH_VERT_FLAG_PINNED ) {
|
2012-04-29 17:11:40 +00:00
|
|
|
mul_v3_fl(temp, -correction);
|
2008-08-03 01:41:57 +00:00
|
|
|
VECADD ( verts[j].tx, verts[j].tx, temp );
|
|
|
|
|
}
|
2012-04-28 06:31:57 +00:00
|
|
|
else if ( cloth->verts [j].flags & CLOTH_VERT_FLAG_PINNED ) {
|
2012-04-29 17:11:40 +00:00
|
|
|
mul_v3_fl(temp, correction);
|
2008-08-03 01:41:57 +00:00
|
|
|
VECADD ( verts[i].tx, verts[i].tx, temp );
|
|
|
|
|
}
|
2012-04-28 06:31:57 +00:00
|
|
|
else {
|
2012-11-04 07:18:29 +00:00
|
|
|
mul_v3_fl(temp, correction * -0.5f);
|
2008-08-03 01:41:57 +00:00
|
|
|
VECADD ( verts[j].tx, verts[j].tx, temp );
|
|
|
|
|
|
2012-04-29 17:11:40 +00:00
|
|
|
sub_v3_v3v3(verts[i].tx, verts[i].tx, temp);
|
2008-08-03 01:41:57 +00:00
|
|
|
}
|
|
|
|
|
ret = 1;
|
|
|
|
|
ret2 += ret;
|
|
|
|
|
}
|
2012-03-06 18:40:15 +00:00
|
|
|
else {
|
2008-08-03 01:41:57 +00:00
|
|
|
// check for approximated time collisions
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if ( overlap )
|
|
|
|
|
MEM_freeN ( overlap );
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////
|
|
|
|
|
// SELFCOLLISIONS: update velocities
|
|
|
|
|
////////////////////////////////////////////////////////////
|
2012-04-28 06:31:57 +00:00
|
|
|
if ( ret2 ) {
|
|
|
|
|
for ( i = 0; i < cloth->numverts; i++ ) {
|
|
|
|
|
if ( ! ( verts [i].flags & CLOTH_VERT_FLAG_PINNED ) ) {
|
2012-04-29 17:11:40 +00:00
|
|
|
sub_v3_v3v3(verts[i].tv, verts[i].tx, verts[i].txold);
|
2008-08-03 01:41:57 +00:00
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
////////////////////////////////////////////////////////////
|
2008-02-12 11:04:58 +00:00
|
|
|
}
|
|
|
|
|
}
|
2008-05-26 10:36:14 +00:00
|
|
|
while ( ret2 && ( clmd->coll_parms->loop_count>rounds ) );
|
2008-07-02 20:28:49 +00:00
|
|
|
|
2012-03-24 06:18:31 +00:00
|
|
|
if (collobjs)
|
2008-08-03 01:00:51 +00:00
|
|
|
MEM_freeN(collobjs);
|
2008-04-08 12:55:35 +00:00
|
|
|
|
2011-05-01 21:39:13 +00:00
|
|
|
return 1|MIN2 ( ret, 1 );
|
2008-01-29 21:01:12 +00:00
|
|
|
}
|