This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/editors/interface/interface_regions.c

3152 lines
89 KiB
C
Raw Normal View History

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
2010-02-12 13:34:04 +00:00
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2008 Blender Foundation.
* All rights reserved.
*
* Contributor(s): Blender Foundation
*
* ***** END GPL LICENSE BLOCK *****
*/
2011-02-27 20:29:51 +00:00
/** \file blender/editors/interface/interface_regions.c
* \ingroup edinterface
*/
#include <stdarg.h>
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
#include <stdlib.h>
#include <string.h>
#include <assert.h>
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
#include "MEM_guardedalloc.h"
#include "DNA_userdef_types.h"
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
#include "BLI_math.h"
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
#include "BLI_blenlib.h"
#include "BLI_utildefines.h"
#include "BLI_ghash.h"
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
#include "PIL_time.h"
#include "BKE_context.h"
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
#include "BKE_screen.h"
#include "BKE_report.h"
#include "BKE_global.h"
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
#include "WM_api.h"
#include "WM_types.h"
2.5: WM Compositing * Triple Buffer is now more complete: - Proper handling of window resize, duplicate, etc. - It now uses 3x3 textures (or less) if the power of two sizes do not match well. That still has a worst case wast of 23.4%, but better than 300%. - It can also use the ARB/NV/EXT_texture_rectangle extension now, which may be supported on hardware that does not support ARB_texture_non_power_of_two. - Gesture, menu and brushe redraws now require no redraws at all from the area regions. So even on a high poly scene just moving the paint cursor or opening a menu should be fast. * Testing can be done by setting the "Window Draw Method" in the User Preferences in the outliner. "Overlap" is still default, since "Triple Buffer" has not been tested on computers other than mine, would like to avoid crashing Blender on startup in case there is a common bug, but it's ready for testing now. - For reference "Full" draws the full window each time. - "Triple Buffer" should work for both swap copy and swap exchange systems, the latter still need the -E command line option for "Overlap". - Resizing and going fullscreen still gives flicker here but no more than "Full" drawing. * Partial Redraw was added. ED_region_tag_redraw_partial takes a rect in window coordinates to define a subarea of the region. On region draw it will then set glScissor to a smaller area, and ar->drawrct will always be set to either the partial or full window rect. The latter can then be used for clipping in the 3D view or clipping interface drawing. Neither is implemented yet.
2009-01-23 03:52:52 +00:00
#include "wm_draw.h"
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
#include "wm_subwindow.h"
#include "RNA_access.h"
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
#include "BIF_gl.h"
#include "UI_interface.h"
#include "UI_interface_icons.h"
#include "UI_view2d.h"
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
#include "BLF_api.h"
#include "BLT_translation.h"
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
#include "ED_screen.h"
Color Management, Stage 2: Switch color pipeline to use OpenColorIO Replace old color pipeline which was supporting linear/sRGB color spaces only with OpenColorIO-based pipeline. This introduces two configurable color spaces: - Input color space for images and movie clips. This space is used to convert images/movies from color space in which file is saved to Blender's linear space (for float images, byte images are not internally converted, only input space is stored for such images and used later). This setting could be found in image/clip data block settings. - Display color space which defines space in which particular display is working. This settings could be found in scene's Color Management panel. When render result is being displayed on the screen, apart from converting image to display space, some additional conversions could happen. This conversions are: - View, which defines tone curve applying before display transformation. These are different ways to view the image on the same display device. For example it could be used to emulate film view on sRGB display. - Exposure affects on image exposure before tone map is applied. - Gamma is post-display gamma correction, could be used to match particular display gamma. - RGB curves are user-defined curves which are applying before display transformation, could be used for different purposes. All this settings by default are only applying on render result and does not affect on other images. If some particular image needs to be affected by this transformation, "View as Render" setting of image data block should be set to truth. Movie clips are always affected by all display transformations. This commit also introduces configurable color space in which sequencer is working. This setting could be found in scene's Color Management panel and it should be used if such stuff as grading needs to be done in color space different from sRGB (i.e. when Film view on sRGB display is use, using VD16 space as sequencer's internal space would make grading working in space which is close to the space using for display). Some technical notes: - Image buffer's float buffer is now always in linear space, even if it was created from 16bit byte images. - Space of byte buffer is stored in image buffer's rect_colorspace property. - Profile of image buffer was removed since it's not longer meaningful. - OpenGL and GLSL is supposed to always work in sRGB space. It is possible to support other spaces, but it's quite large project which isn't so much important. - Legacy Color Management option disabled is emulated by using None display. It could have some regressions, but there's no clear way to avoid them. - If OpenColorIO is disabled on build time, it should make blender behaving in the same way as previous release with color management enabled. More details could be found at this page (more details would be added soon): http://wiki.blender.org/index.php/Dev:Ref/Release_Notes/2.64/Color_Management -- Thanks to Xavier Thomas, Lukas Toene for initial work on OpenColorIO integration and to Brecht van Lommel for some further development and code/ usecase review!
2012-09-15 10:05:07 +00:00
#include "IMB_colormanagement.h"
#include "interface_intern.h"
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
#define MENU_PADDING (int)(0.2f * UI_UNIT_Y)
#define MENU_BORDER (int)(0.3f * U.widget_unit)
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
static int rna_property_enum_step(const bContext *C, PointerRNA *ptr, PropertyRNA *prop, int direction)
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
{
EnumPropertyItem *item_array;
int totitem;
bool free;
int value;
int i, i_init;
int step = (direction < 0) ? -1 : 1;
int step_tot = 0;
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
RNA_property_enum_items((bContext *)C, ptr, prop, &item_array, &totitem, &free);
value = RNA_property_enum_get(ptr, prop);
i = RNA_enum_from_value(item_array, value);
i_init = i;
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
do {
i = mod_i(i + step, totitem);
if (item_array[i].identifier[0]) {
step_tot += step;
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
}
} while ((i != i_init) && (step_tot != direction));
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
if (i != i_init) {
value = item_array[i].value;
}
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
if (free) {
MEM_freeN(item_array);
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
}
return value;
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
}
bool ui_but_menu_step_poll(const uiBut *but)
{
BLI_assert(but->type == UI_BTYPE_MENU);
/* currenly only RNA buttons */
return ((but->menu_step_func != NULL) ||
(but->rnaprop && RNA_property_type(but->rnaprop) == PROP_ENUM));
}
int ui_but_menu_step(uiBut *but, int direction)
{
if (ui_but_menu_step_poll(but)) {
if (but->menu_step_func) {
return but->menu_step_func(but->block->evil_C, direction, but->poin);
}
else {
return rna_property_enum_step(but->block->evil_C, &but->rnapoin, but->rnaprop, direction);
}
}
printf("%s: cannot cycle button '%s'\n", __func__, but->str);
return 0;
}
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
/******************** Creating Temporary regions ******************/
static ARegion *ui_region_temp_add(bScreen *sc)
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
{
ARegion *ar;
2012-03-30 01:51:25 +00:00
ar = MEM_callocN(sizeof(ARegion), "area region");
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
BLI_addtail(&sc->regionbase, ar);
2012-03-30 01:51:25 +00:00
ar->regiontype = RGN_TYPE_TEMPORARY;
ar->alignment = RGN_ALIGN_FLOAT;
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
return ar;
}
static void ui_region_temp_remove(bContext *C, bScreen *sc, ARegion *ar)
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
{
wmWindow *win = CTX_wm_window(C);
if (win)
wm_draw_region_clear(win, ar);
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
ED_region_exit(C, ar);
2012-03-30 01:51:25 +00:00
BKE_area_region_free(NULL, ar); /* NULL: no spacetype */
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
BLI_freelinkN(&sc->regionbase, ar);
}
/************************* Creating Tooltips **********************/
#define UI_TIP_PAD_FAC 1.3f
#define UI_TIP_PADDING (int)(UI_TIP_PAD_FAC * UI_UNIT_Y)
#define UI_TIP_MAXWIDTH 600
#define MAX_TOOLTIP_LINES 8
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
typedef struct uiTooltipData {
rcti bbox;
uiFontStyle fstyle;
char lines[MAX_TOOLTIP_LINES][2048];
char header[2048], active_info[2048];
struct {
enum {
UI_TIP_STYLE_NORMAL = 0,
UI_TIP_STYLE_HEADER,
UI_TIP_STYLE_MONO,
} style : 3;
enum {
UI_TIP_LC_MAIN = 0, /* primary text */
UI_TIP_LC_VALUE, /* the value of buttons (also shortcuts) */
UI_TIP_LC_ACTIVE, /* titles of active enum values */
UI_TIP_LC_NORMAL, /* regular text */
UI_TIP_LC_PYTHON, /* Python snippet */
UI_TIP_LC_ALERT, /* description of why operator can't run */
} color_id : 4;
int is_pad : 1;
} format[MAX_TOOLTIP_LINES];
struct {
unsigned int x_pos; /* x cursor position at the end of the last line */
unsigned int lines; /* number of lines, 1 or more with word-wrap */
} line_geom[MAX_TOOLTIP_LINES];
int wrap_width;
int totline;
int toth, lineh;
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
} uiTooltipData;
#define UI_TIP_LC_MAX 6
BLI_STATIC_ASSERT(UI_TIP_LC_MAX == UI_TIP_LC_ALERT + 1, "invalid lc-max");
BLI_STATIC_ASSERT(sizeof(((uiTooltipData *)NULL)->format[0]) <= sizeof(int), "oversize");
2015-05-05 03:13:47 +10:00
static void rgb_tint(
float col[3],
float h, float h_strength,
float v, float v_strength)
{
float col_hsv_from[3];
float col_hsv_to[3];
rgb_to_hsv_v(col, col_hsv_from);
col_hsv_to[0] = h;
col_hsv_to[1] = h_strength;
col_hsv_to[2] = (col_hsv_from[2] * (1.0f - v_strength)) + (v * v_strength);
hsv_to_rgb_v(col_hsv_to, col);
}
static void ui_tooltip_region_draw_cb(const bContext *UNUSED(C), ARegion *ar)
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
{
const float pad_px = UI_TIP_PADDING;
2012-03-30 01:51:25 +00:00
uiTooltipData *data = ar->regiondata;
uiWidgetColors *theme = ui_tooltip_get_theme();
rcti bbox = data->bbox;
float tip_colors[UI_TIP_LC_MAX][3];
float *main_color = tip_colors[UI_TIP_LC_MAIN]; /* the color from the theme */
float *value_color = tip_colors[UI_TIP_LC_VALUE];
float *active_color = tip_colors[UI_TIP_LC_ACTIVE];
float *normal_color = tip_colors[UI_TIP_LC_NORMAL];
float *python_color = tip_colors[UI_TIP_LC_PYTHON];
float *alert_color = tip_colors[UI_TIP_LC_ALERT];
float background_color[3];
float tone_bg;
int i, multisample_enabled;
/* disable AA, makes widgets too blurry */
2015-11-24 02:20:38 -05:00
multisample_enabled = glIsEnabled(GL_MULTISAMPLE);
if (multisample_enabled)
2015-11-24 02:20:38 -05:00
glDisable(GL_MULTISAMPLE);
wmOrtho2_region_ui(ar);
/* draw background */
ui_draw_tooltip_background(UI_style_get(), NULL, &bbox);
/* set background_color */
rgb_uchar_to_float(background_color, (const unsigned char *)theme->inner);
/* calculate normal_color */
rgb_uchar_to_float(main_color, (const unsigned char *)theme->text);
copy_v3_v3(active_color, main_color);
copy_v3_v3(normal_color, main_color);
copy_v3_v3(python_color, main_color);
copy_v3_v3(alert_color, main_color);
copy_v3_v3(value_color, main_color);
/* find the brightness difference between background and text colors */
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
tone_bg = rgb_to_grayscale(background_color);
/* tone_fg = rgb_to_grayscale(main_color); */
/* mix the colors */
2015-03-19 14:14:48 +11:00
rgb_tint(value_color, 0.0f, 0.0f, tone_bg, 0.2f); /* light gray */
rgb_tint(active_color, 0.6f, 0.2f, tone_bg, 0.2f); /* light blue */
2015-03-19 14:14:48 +11:00
rgb_tint(normal_color, 0.0f, 0.0f, tone_bg, 0.4f); /* gray */
rgb_tint(python_color, 0.0f, 0.0f, tone_bg, 0.5f); /* dark gray */
rgb_tint(alert_color, 0.0f, 0.8f, tone_bg, 0.1f); /* red */
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
/* draw text */
BLF_wordwrap(data->fstyle.uifont_id, data->wrap_width);
BLF_wordwrap(blf_mono_font, data->wrap_width);
bbox.xmin += 0.5f * pad_px; /* add padding to the text */
bbox.ymax -= 0.25f * pad_px;
for (i = 0; i < data->totline; i++) {
bbox.ymin = bbox.ymax - (data->lineh * data->line_geom[i].lines);
if (data->format[i].style == UI_TIP_STYLE_HEADER) {
/* draw header and active data (is done here to be able to change color) */
uiFontStyle fstyle_header = data->fstyle;
float xofs, yofs;
/* override text-style */
fstyle_header.shadow = 1;
fstyle_header.shadowcolor = rgb_to_grayscale(tip_colors[UI_TIP_LC_MAIN]);
fstyle_header.shadx = fstyle_header.shady = 0;
fstyle_header.shadowalpha = 1.0f;
fstyle_header.word_wrap = true;
UI_fontstyle_set(&fstyle_header);
glColor3fv(tip_colors[UI_TIP_LC_MAIN]);
UI_fontstyle_draw(&fstyle_header, &bbox, data->header);
/* offset to the end of the last line */
xofs = data->line_geom[i].x_pos;
yofs = data->lineh * (data->line_geom[i].lines - 1);
bbox.xmin += xofs;
bbox.ymax -= yofs;
glColor3fv(tip_colors[UI_TIP_LC_ACTIVE]);
fstyle_header.shadow = 0;
UI_fontstyle_draw(&fstyle_header, &bbox, data->active_info);
/* undo offset */
bbox.xmin -= xofs;
bbox.ymax += yofs;
}
else if (data->format[i].style == UI_TIP_STYLE_MONO) {
uiFontStyle fstyle_mono = data->fstyle;
fstyle_mono.uifont_id = blf_mono_font;
fstyle_mono.word_wrap = true;
UI_fontstyle_set(&fstyle_mono);
/* XXX, needed because we dont have mono in 'U.uifonts' */
BLF_size(fstyle_mono.uifont_id, fstyle_mono.points * U.pixelsize, U.dpi);
glColor3fv(tip_colors[data->format[i].color_id]);
UI_fontstyle_draw(&fstyle_mono, &bbox, data->lines[i]);
}
else {
uiFontStyle fstyle_normal = data->fstyle;
BLI_assert(data->format[i].style == UI_TIP_STYLE_NORMAL);
fstyle_normal.word_wrap = true;
/* draw remaining data */
UI_fontstyle_set(&fstyle_normal);
glColor3fv(tip_colors[data->format[i].color_id]);
UI_fontstyle_draw(&fstyle_normal, &bbox, data->lines[i]);
}
bbox.ymax -= data->lineh * data->line_geom[i].lines;
if ((i + 1 != data->totline) && data->format[i + 1].is_pad) {
bbox.ymax -= data->lineh * (UI_TIP_PAD_FAC - 1);
}
}
BLF_disable(data->fstyle.uifont_id, BLF_WORD_WRAP);
BLF_disable(blf_mono_font, BLF_WORD_WRAP);
if (multisample_enabled)
2015-11-24 02:20:38 -05:00
glEnable(GL_MULTISAMPLE);
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
}
static void ui_tooltip_region_free_cb(ARegion *ar)
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
{
uiTooltipData *data;
2012-03-30 01:51:25 +00:00
data = ar->regiondata;
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
MEM_freeN(data);
2012-03-30 01:51:25 +00:00
ar->regiondata = NULL;
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
}
ARegion *ui_tooltip_create(bContext *C, ARegion *butregion, uiBut *but)
{
const float pad_px = UI_TIP_PADDING;
wmWindow *win = CTX_wm_window(C);
uiStyle *style = UI_style_get();
static ARegionType type;
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
ARegion *ar;
uiTooltipData *data;
/* IDProperty *prop;*/
char buf[512];
/* aspect values that shrink text are likely unreadable */
const float aspect = min_ff(1.0f, but->block->aspect);
int fonth, fontw;
int winx, ofsx, ofsy, h, i;
rctf rect_fl;
rcti rect_i;
int font_flag = 0;
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
uiStringInfo but_tip = {BUT_GET_TIP, NULL};
uiStringInfo enum_label = {BUT_GET_RNAENUM_LABEL, NULL};
uiStringInfo enum_tip = {BUT_GET_RNAENUM_TIP, NULL};
uiStringInfo op_keymap = {BUT_GET_OP_KEYMAP, NULL};
uiStringInfo prop_keymap = {BUT_GET_PROP_KEYMAP, NULL};
uiStringInfo rna_struct = {BUT_GET_RNASTRUCT_IDENTIFIER, NULL};
uiStringInfo rna_prop = {BUT_GET_RNAPROP_IDENTIFIER, NULL};
if (but->drawflag & UI_BUT_NO_TOOLTIP)
return NULL;
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
/* create tooltip data */
2012-03-30 01:51:25 +00:00
data = MEM_callocN(sizeof(uiTooltipData), "uiTooltipData");
UI_but_string_info_get(C, but, &but_tip, &enum_label, &enum_tip, &op_keymap, &prop_keymap, &rna_struct, &rna_prop, NULL);
/* Tip */
if (but_tip.strinfo) {
BLI_strncpy(data->header, but_tip.strinfo, sizeof(data->lines[0]));
if (enum_label.strinfo) {
BLI_snprintf(data->header, sizeof(data->header), "%s: ", but_tip.strinfo);
BLI_strncpy(data->active_info, enum_label.strinfo, sizeof(data->lines[0]));
}
data->format[data->totline].style = UI_TIP_STYLE_HEADER;
data->totline++;
/* special case enum rna buttons */
if ((but->type & UI_BTYPE_ROW) && but->rnaprop && RNA_property_flag(but->rnaprop) & PROP_ENUM_FLAG) {
BLI_strncpy(data->lines[data->totline], IFACE_("(Shift-Click/Drag to select multiple)"),
sizeof(data->lines[0]));
data->format[data->totline].color_id = UI_TIP_LC_NORMAL;
data->totline++;
}
}
/* Enum item label & tip */
if (enum_tip.strinfo) {
BLI_strncpy(data->lines[data->totline], enum_tip.strinfo, sizeof(data->lines[0]));
data->format[data->totline].is_pad = true;
data->format[data->totline].color_id = UI_TIP_LC_VALUE;
data->totline++;
}
/* Op shortcut */
if (op_keymap.strinfo) {
BLI_snprintf(data->lines[data->totline], sizeof(data->lines[0]), TIP_("Shortcut: %s"), op_keymap.strinfo);
data->format[data->totline].is_pad = true;
data->format[data->totline].color_id = UI_TIP_LC_VALUE;
data->totline++;
}
/* Property context-toggle shortcut */
if (prop_keymap.strinfo) {
BLI_snprintf(data->lines[data->totline], sizeof(data->lines[0]), TIP_("Shortcut: %s"), prop_keymap.strinfo);
data->format[data->totline].is_pad = true;
data->format[data->totline].color_id = UI_TIP_LC_VALUE;
data->totline++;
}
if (ELEM(but->type, UI_BTYPE_TEXT, UI_BTYPE_SEARCH_MENU)) {
/* better not show the value of a password */
if ((but->rnaprop && (RNA_property_subtype(but->rnaprop) == PROP_PASSWORD)) == 0) {
/* full string */
ui_but_string_get(but, buf, sizeof(buf));
if (buf[0]) {
BLI_snprintf(data->lines[data->totline], sizeof(data->lines[0]), TIP_("Value: %s"), buf);
data->format[data->totline].is_pad = true;
data->format[data->totline].color_id = UI_TIP_LC_VALUE;
data->totline++;
}
}
}
if (but->rnaprop) {
int unit_type = UI_but_unit_type_get(but);
if (unit_type == PROP_UNIT_ROTATION) {
if (RNA_property_type(but->rnaprop) == PROP_FLOAT) {
float value = RNA_property_array_check(but->rnaprop) ?
RNA_property_float_get_index(&but->rnapoin, but->rnaprop, but->rnaindex) :
RNA_property_float_get(&but->rnapoin, but->rnaprop);
BLI_snprintf(data->lines[data->totline], sizeof(data->lines[0]), TIP_("Radians: %f"), value);
data->format[data->totline].color_id = UI_TIP_LC_NORMAL;
data->totline++;
}
}
if (but->flag & UI_BUT_DRIVEN) {
if (ui_but_anim_expression_get(but, buf, sizeof(buf))) {
/* expression */
BLI_snprintf(data->lines[data->totline], sizeof(data->lines[0]), TIP_("Expression: %s"), buf);
data->format[data->totline].color_id = UI_TIP_LC_NORMAL;
data->totline++;
}
}
if (but->rnapoin.id.data) {
2012-03-30 01:51:25 +00:00
ID *id = but->rnapoin.id.data;
if (id->lib) {
BLI_snprintf(data->lines[data->totline], sizeof(data->lines[0]), TIP_("Library: %s"), id->lib->name);
data->format[data->totline].color_id = UI_TIP_LC_NORMAL;
data->totline++;
}
}
}
else if (but->optype) {
PointerRNA *opptr;
char *str;
opptr = UI_but_operator_ptr_get(but); /* allocated when needed, the button owns it */
/* so the context is passed to itemf functions (some py itemf functions use it) */
WM_operator_properties_sanitize(opptr, false);
str = WM_operator_pystring_ex(C, NULL, false, false, but->optype, opptr);
/* avoid overly verbose tips (eg, arrays of 20 layers), exact limit is arbitrary */
WM_operator_pystring_abbreviate(str, 32);
/* operator info */
if ((U.flag & USER_TOOLTIPS_PYTHON) == 0) {
BLI_snprintf(data->lines[data->totline], sizeof(data->lines[0]), TIP_("Python: %s"), str);
data->format[data->totline].style = UI_TIP_STYLE_MONO;
data->format[data->totline].is_pad = true;
data->format[data->totline].color_id = UI_TIP_LC_PYTHON;
data->totline++;
}
MEM_freeN(str);
/* second check if we are disabled - why */
if (but->flag & UI_BUT_DISABLED) {
const char *poll_msg;
CTX_wm_operator_poll_msg_set(C, NULL);
WM_operator_poll_context(C, but->optype, but->opcontext);
2012-03-30 01:51:25 +00:00
poll_msg = CTX_wm_operator_poll_msg_get(C);
if (poll_msg) {
BLI_snprintf(data->lines[data->totline], sizeof(data->lines[0]), TIP_("Disabled: %s"), poll_msg);
data->format[data->totline].color_id = UI_TIP_LC_ALERT;
data->totline++;
}
}
}
if ((U.flag & USER_TOOLTIPS_PYTHON) == 0 && !but->optype && rna_struct.strinfo) {
if (rna_prop.strinfo) {
/* Struct and prop */
BLI_snprintf(data->lines[data->totline], sizeof(data->lines[0]),
TIP_("Python: %s.%s"),
rna_struct.strinfo, rna_prop.strinfo);
}
else {
/* Only struct (e.g. menus) */
BLI_snprintf(data->lines[data->totline], sizeof(data->lines[0]),
TIP_("Python: %s"), rna_struct.strinfo);
}
data->format[data->totline].style = UI_TIP_STYLE_MONO;
data->format[data->totline].is_pad = true;
data->format[data->totline].color_id = UI_TIP_LC_PYTHON;
data->totline++;
if (but->rnapoin.id.data) {
/* this could get its own 'BUT_GET_...' type */
/* never fails */
char *id_path;
if (but->rnaprop) {
id_path = RNA_path_full_property_py_ex(&but->rnapoin, but->rnaprop, but->rnaindex, true);
}
else {
id_path = RNA_path_full_struct_py(&but->rnapoin);
}
BLI_strncat_utf8(data->lines[data->totline], id_path, sizeof(data->lines[0]));
MEM_freeN(id_path);
data->format[data->totline].style = UI_TIP_STYLE_MONO;
data->format[data->totline].color_id = UI_TIP_LC_PYTHON;
data->totline++;
}
}
/* Free strinfo's... */
if (but_tip.strinfo)
MEM_freeN(but_tip.strinfo);
if (enum_label.strinfo)
MEM_freeN(enum_label.strinfo);
if (enum_tip.strinfo)
MEM_freeN(enum_tip.strinfo);
if (op_keymap.strinfo)
MEM_freeN(op_keymap.strinfo);
if (prop_keymap.strinfo)
MEM_freeN(prop_keymap.strinfo);
if (rna_struct.strinfo)
MEM_freeN(rna_struct.strinfo);
if (rna_prop.strinfo)
MEM_freeN(rna_prop.strinfo);
BLI_assert(data->totline < MAX_TOOLTIP_LINES);
if (data->totline == 0) {
MEM_freeN(data);
return NULL;
}
/* create area region */
ar = ui_region_temp_add(CTX_wm_screen(C));
memset(&type, 0, sizeof(ARegionType));
2012-03-30 01:51:25 +00:00
type.draw = ui_tooltip_region_draw_cb;
type.free = ui_tooltip_region_free_cb;
type.regionid = RGN_TYPE_TEMPORARY;
2012-03-30 01:51:25 +00:00
ar->type = &type;
/* set font, get bb */
2012-03-30 01:51:25 +00:00
data->fstyle = style->widget; /* copy struct */
ui_fontscale(&data->fstyle.points, aspect);
UI_fontstyle_set(&data->fstyle);
data->wrap_width = min_ii(UI_TIP_MAXWIDTH * U.pixelsize / aspect, WM_window_pixels_x(win) - (UI_TIP_PADDING * 2));
font_flag |= BLF_WORD_WRAP;
if (data->fstyle.kerning == 1) {
font_flag |= BLF_KERNING_DEFAULT;
}
BLF_enable(data->fstyle.uifont_id, font_flag);
BLF_enable(blf_mono_font, font_flag);
BLF_wordwrap(data->fstyle.uifont_id, data->wrap_width);
BLF_wordwrap(blf_mono_font, data->wrap_width);
/* these defines tweaked depending on font */
#define TIP_BORDER_X (16.0f / aspect)
#define TIP_BORDER_Y (6.0f / aspect)
2012-03-30 01:51:25 +00:00
h = BLF_height_max(data->fstyle.uifont_id);
for (i = 0, fontw = 0, fonth = 0; i < data->totline; i++) {
struct ResultBLF info;
int w, x_pos = 0;
if (data->format[i].style == UI_TIP_STYLE_HEADER) {
w = BLF_width_ex(data->fstyle.uifont_id, data->header, sizeof(data->header), &info);
if (enum_label.strinfo) {
x_pos = info.width + (U.widget_unit / 2);
w = max_ii(w, x_pos + BLF_width(data->fstyle.uifont_id, data->active_info, sizeof(data->active_info)));
}
}
else if (data->format[i].style == UI_TIP_STYLE_MONO) {
BLF_size(blf_mono_font, data->fstyle.points * U.pixelsize, U.dpi);
w = BLF_width_ex(blf_mono_font, data->lines[i], sizeof(data->lines[i]), &info);
}
else {
BLI_assert(data->format[i].style == UI_TIP_STYLE_NORMAL);
w = BLF_width_ex(data->fstyle.uifont_id, data->lines[i], sizeof(data->lines[i]), &info);
}
fontw = max_ii(fontw, w);
fonth += h * info.lines;
if ((i + 1 != data->totline) && data->format[i + 1].is_pad) {
fonth += h * (UI_TIP_PAD_FAC - 1);
}
data->line_geom[i].lines = info.lines;
data->line_geom[i].x_pos = x_pos;
}
//fontw *= aspect;
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
BLF_disable(data->fstyle.uifont_id, font_flag);
BLF_disable(blf_mono_font, font_flag);
2012-03-30 01:51:25 +00:00
ar->regiondata = data;
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
2012-03-30 01:51:25 +00:00
data->toth = fonth;
data->lineh = h;
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
/* compute position */
ofsx = 0; //(but->block->panel) ? but->block->panel->ofsx : 0;
ofsy = 0; //(but->block->panel) ? but->block->panel->ofsy : 0;
rect_fl.xmin = BLI_rctf_cent_x(&but->rect) + ofsx - TIP_BORDER_X;
rect_fl.xmax = rect_fl.xmin + fontw + pad_px;
rect_fl.ymax = but->rect.ymin + ofsy - TIP_BORDER_Y;
rect_fl.ymin = rect_fl.ymax - fonth - TIP_BORDER_Y;
/* since the text has beens caled already, the size of tooltips is defined now */
/* here we try to figure out the right location */
if (butregion) {
float mx, my;
float ofsx_fl = rect_fl.xmin, ofsy_fl = rect_fl.ymax;
ui_block_to_window_fl(butregion, but->block, &ofsx_fl, &ofsy_fl);
#if 1
/* use X mouse location */
mx = (win->eventstate->x + (TIP_BORDER_X * 2)) - BLI_rctf_cent_x(&but->rect);
#else
mx = ofsx_fl - rect_fl.xmin;
#endif
my = ofsy_fl - rect_fl.ymax;
BLI_rctf_translate(&rect_fl, mx, my);
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
}
BLI_rcti_rctf_copy(&rect_i, &rect_fl);
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
#undef TIP_BORDER_X
#undef TIP_BORDER_Y
/* clip with window boundaries */
winx = WM_window_pixels_x(win);
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
if (rect_i.xmax > winx) {
/* super size */
if (rect_i.xmax > winx + rect_i.xmin) {
rect_i.xmax = winx;
rect_i.xmin = 0;
}
else {
rect_i.xmin -= rect_i.xmax - winx;
rect_i.xmax = winx;
}
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
}
/* ensure at least 5 px above screen bounds
* 25 is just a guess to be above the menu item */
if (rect_i.ymin < 5) {
rect_i.ymax += (-rect_i.ymin) + 30;
rect_i.ymin = 30;
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
}
/* add padding */
BLI_rcti_resize(&rect_i,
BLI_rcti_size_x(&rect_i) + pad_px,
BLI_rcti_size_y(&rect_i) + pad_px);
/* widget rect, in region coords */
{
const int margin = UI_POPUP_MARGIN;
data->bbox.xmin = margin;
data->bbox.xmax = BLI_rcti_size_x(&rect_i) - margin;
data->bbox.ymin = margin;
data->bbox.ymax = BLI_rcti_size_y(&rect_i);
/* region bigger for shadow */
ar->winrct.xmin = rect_i.xmin - margin;
ar->winrct.xmax = rect_i.xmax + margin;
ar->winrct.ymin = rect_i.ymin - margin;
ar->winrct.ymax = rect_i.ymax + margin;
}
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
/* adds subwindow */
ED_region_init(C, ar);
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
/* notify change and redraw */
ED_region_tag_redraw(ar);
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
return ar;
}
void ui_tooltip_free(bContext *C, ARegion *ar)
{
ui_region_temp_remove(C, CTX_wm_screen(C), ar);
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
}
/************************* Creating Search Box **********************/
struct uiSearchItems {
int maxitem, totitem, maxstrlen;
int offset, offset_i; /* offset for inserting in array */
int more; /* flag indicating there are more items */
char **names;
void **pointers;
int *icons;
AutoComplete *autocpl;
void *active;
};
typedef struct uiSearchboxData {
rcti bbox;
uiFontStyle fstyle;
uiSearchItems items;
2012-03-30 01:51:25 +00:00
int active; /* index in items array */
bool noback; /* when menu opened with enough space for this */
bool preview; /* draw thumbnail previews, rather than list */
bool use_sep; /* use the UI_SEP_CHAR char for splitting shortcuts (good for operators, bad for data) */
int prv_rows, prv_cols;
} uiSearchboxData;
2012-03-30 01:51:25 +00:00
#define SEARCH_ITEMS 10
/* exported for use by search callbacks */
/* returns zero if nothing to add */
bool UI_search_item_add(uiSearchItems *items, const char *name, void *poin, int iconid)
{
/* hijack for autocomplete */
if (items->autocpl) {
UI_autocomplete_update_name(items->autocpl, name);
return true;
}
/* hijack for finding active item */
if (items->active) {
2012-03-30 01:51:25 +00:00
if (poin == items->active)
items->offset_i = items->totitem;
items->totitem++;
return true;
}
2012-03-30 01:51:25 +00:00
if (items->totitem >= items->maxitem) {
items->more = 1;
return false;
}
/* skip first items in list */
if (items->offset_i > 0) {
items->offset_i--;
return true;
}
if (items->names)
BLI_strncpy(items->names[items->totitem], name, items->maxstrlen);
if (items->pointers)
2012-03-30 01:51:25 +00:00
items->pointers[items->totitem] = poin;
if (items->icons)
2012-03-30 01:51:25 +00:00
items->icons[items->totitem] = iconid;
items->totitem++;
return true;
}
int UI_searchbox_size_y(void)
{
return SEARCH_ITEMS * UI_UNIT_Y + 2 * UI_POPUP_MENU_TOP;
}
int UI_searchbox_size_x(void)
{
return 12 * UI_UNIT_X;
}
int UI_search_items_find_index(uiSearchItems *items, const char *name)
{
int i;
for (i = 0; i < items->totitem; i++) {
if (STREQ(name, items->names[i])) {
return i;
}
}
return -1;
}
/* ar is the search box itself */
static void ui_searchbox_select(bContext *C, ARegion *ar, uiBut *but, int step)
{
2012-03-30 01:51:25 +00:00
uiSearchboxData *data = ar->regiondata;
/* apply step */
2012-03-30 01:51:25 +00:00
data->active += step;
if (data->items.totitem == 0) {
data->active = -1;
}
else if (data->active >= data->items.totitem) {
if (data->items.more) {
data->items.offset++;
data->active = data->items.totitem - 1;
ui_searchbox_update(C, ar, but, false);
}
else {
data->active = data->items.totitem - 1;
}
}
else if (data->active < 0) {
if (data->items.offset) {
data->items.offset--;
data->active = 0;
ui_searchbox_update(C, ar, but, false);
}
else {
/* only let users step into an 'unset' state for unlink buttons */
data->active = (but->flag & UI_BUT_SEARCH_UNLINK) ? -1 : 0;
}
}
ED_region_tag_redraw(ar);
}
static void ui_searchbox_butrect(rcti *r_rect, uiSearchboxData *data, int itemnr)
{
/* thumbnail preview */
if (data->preview) {
int butw = (BLI_rcti_size_x(&data->bbox) - 2 * MENU_BORDER) / data->prv_cols;
int buth = (BLI_rcti_size_y(&data->bbox) - 2 * MENU_BORDER) / data->prv_rows;
int row, col;
*r_rect = data->bbox;
col = itemnr % data->prv_cols;
row = itemnr / data->prv_cols;
r_rect->xmin += MENU_BORDER + (col * butw);
r_rect->xmax = r_rect->xmin + butw;
r_rect->ymax -= MENU_BORDER + (row * buth);
r_rect->ymin = r_rect->ymax - buth;
}
/* list view */
else {
int buth = (BLI_rcti_size_y(&data->bbox) - 2 * UI_POPUP_MENU_TOP) / SEARCH_ITEMS;
*r_rect = data->bbox;
r_rect->xmin = data->bbox.xmin + 3.0f;
r_rect->xmax = data->bbox.xmax - 3.0f;
r_rect->ymax = data->bbox.ymax - UI_POPUP_MENU_TOP - itemnr * buth;
r_rect->ymin = r_rect->ymax - buth;
}
}
int ui_searchbox_find_index(ARegion *ar, const char *name)
{
uiSearchboxData *data = ar->regiondata;
return UI_search_items_find_index(&data->items, name);
}
/* x and y in screencoords */
bool ui_searchbox_inside(ARegion *ar, int x, int y)
{
2012-03-30 01:51:25 +00:00
uiSearchboxData *data = ar->regiondata;
return BLI_rcti_isect_pt(&data->bbox, x - ar->winrct.xmin, y - ar->winrct.ymin);
}
/* string validated to be of correct length (but->hardmax) */
bool ui_searchbox_apply(uiBut *but, ARegion *ar)
{
2012-03-30 01:51:25 +00:00
uiSearchboxData *data = ar->regiondata;
2012-03-30 01:51:25 +00:00
but->func_arg2 = NULL;
if (data->active != -1) {
const char *name = data->items.names[data->active];
const char *name_sep = data->use_sep ? strrchr(name, UI_SEP_CHAR) : NULL;
BLI_strncpy(but->editstr, name, name_sep ? (name_sep - name) : data->items.maxstrlen);
but->func_arg2 = data->items.pointers[data->active];
return true;
}
else if (but->flag & UI_BUT_SEARCH_UNLINK) {
/* It is valid for _UNLINK flavor to have no active element (it's a valid way to unlink). */
but->editstr[0] = '\0';
return true;
}
else {
return false;
}
}
void ui_searchbox_event(bContext *C, ARegion *ar, uiBut *but, const wmEvent *event)
{
2012-03-30 01:51:25 +00:00
uiSearchboxData *data = ar->regiondata;
int type = event->type, val = event->val;
if (type == MOUSEPAN)
ui_pan_to_scroll(event, &type, &val);
switch (type) {
case WHEELUPMOUSE:
case UPARROWKEY:
ui_searchbox_select(C, ar, but, -1);
break;
case WHEELDOWNMOUSE:
case DOWNARROWKEY:
ui_searchbox_select(C, ar, but, 1);
break;
case MOUSEMOVE:
if (BLI_rcti_isect_pt(&ar->winrct, event->x, event->y)) {
rcti rect;
int a;
2012-03-30 01:51:25 +00:00
for (a = 0; a < data->items.totitem; a++) {
ui_searchbox_butrect(&rect, data, a);
if (BLI_rcti_isect_pt(&rect, event->x - ar->winrct.xmin, event->y - ar->winrct.ymin)) {
if (data->active != a) {
data->active = a;
ui_searchbox_select(C, ar, but, 0);
break;
}
}
}
}
break;
}
}
/* ar is the search box itself */
void ui_searchbox_update(bContext *C, ARegion *ar, uiBut *but, const bool reset)
{
2012-03-30 01:51:25 +00:00
uiSearchboxData *data = ar->regiondata;
/* reset vars */
2012-03-30 01:51:25 +00:00
data->items.totitem = 0;
data->items.more = 0;
if (reset == false) {
2012-03-30 01:51:25 +00:00
data->items.offset_i = data->items.offset;
}
else {
2012-03-30 01:51:25 +00:00
data->items.offset_i = data->items.offset = 0;
data->active = -1;
/* handle active */
if (but->search_func && but->func_arg2) {
2012-03-30 01:51:25 +00:00
data->items.active = but->func_arg2;
but->search_func(C, but->search_arg, but->editstr, &data->items);
2012-03-30 01:51:25 +00:00
data->items.active = NULL;
/* found active item, calculate real offset by centering it */
if (data->items.totitem) {
/* first case, begin of list */
if (data->items.offset_i < data->items.maxitem) {
data->active = data->items.offset_i;
2012-03-30 01:51:25 +00:00
data->items.offset_i = 0;
}
else {
/* second case, end of list */
if (data->items.totitem - data->items.offset_i <= data->items.maxitem) {
data->active = data->items.offset_i - data->items.totitem + data->items.maxitem;
2012-03-30 01:51:25 +00:00
data->items.offset_i = data->items.totitem - data->items.maxitem;
}
else {
/* center active item */
2012-03-30 01:51:25 +00:00
data->items.offset_i -= data->items.maxitem / 2;
data->active = data->items.maxitem / 2;
}
}
}
2012-03-30 01:51:25 +00:00
data->items.offset = data->items.offset_i;
data->items.totitem = 0;
}
}
/* callback */
if (but->search_func)
but->search_func(C, but->search_arg, but->editstr, &data->items);
/* handle case where editstr is equal to one of items */
if (reset && data->active == -1) {
int a;
2012-03-30 01:51:25 +00:00
for (a = 0; a < data->items.totitem; a++) {
const char *name = data->items.names[a];
const char *name_sep = data->use_sep ? strrchr(name, UI_SEP_CHAR) : NULL;
if (STREQLEN(but->editstr, name, name_sep ? (name_sep - name) : data->items.maxstrlen)) {
data->active = a;
break;
}
}
2012-03-30 01:51:25 +00:00
if (data->items.totitem == 1 && but->editstr[0])
data->active = 0;
}
/* validate selected item */
ui_searchbox_select(C, ar, but, 0);
ED_region_tag_redraw(ar);
}
int ui_searchbox_autocomplete(bContext *C, ARegion *ar, uiBut *but, char *str)
{
2012-03-30 01:51:25 +00:00
uiSearchboxData *data = ar->regiondata;
int match = AUTOCOMPLETE_NO_MATCH;
if (str[0]) {
data->items.autocpl = UI_autocomplete_begin(str, ui_but_string_get_max_length(but));
but->search_func(C, but->search_arg, but->editstr, &data->items);
match = UI_autocomplete_end(data->items.autocpl, str);
2012-03-30 01:51:25 +00:00
data->items.autocpl = NULL;
}
return match;
}
static void ui_searchbox_region_draw_cb(const bContext *UNUSED(C), ARegion *ar)
{
2012-03-30 01:51:25 +00:00
uiSearchboxData *data = ar->regiondata;
/* pixel space */
wmOrtho2_region_ui(ar);
if (data->noback == false)
2012-03-30 01:51:25 +00:00
ui_draw_search_back(NULL, NULL, &data->bbox); /* style not used yet */
/* draw text */
if (data->items.totitem) {
rcti rect;
int a;
if (data->preview) {
/* draw items */
2012-03-30 01:51:25 +00:00
for (a = 0; a < data->items.totitem; a++) {
ui_searchbox_butrect(&rect, data, a);
/* widget itself */
ui_draw_preview_item(&data->fstyle, &rect, data->items.names[a], data->items.icons[a],
(a == data->active) ? UI_ACTIVE : 0);
}
/* indicate more */
if (data->items.more) {
2012-03-30 01:51:25 +00:00
ui_searchbox_butrect(&rect, data, data->items.maxitem - 1);
glEnable(GL_BLEND);
2012-03-30 01:51:25 +00:00
UI_icon_draw(rect.xmax - 18, rect.ymin - 7, ICON_TRIA_DOWN);
glDisable(GL_BLEND);
}
if (data->items.offset) {
ui_searchbox_butrect(&rect, data, 0);
glEnable(GL_BLEND);
2012-03-30 01:51:25 +00:00
UI_icon_draw(rect.xmin, rect.ymax - 9, ICON_TRIA_UP);
glDisable(GL_BLEND);
}
}
else {
/* draw items */
2012-03-30 01:51:25 +00:00
for (a = 0; a < data->items.totitem; a++) {
ui_searchbox_butrect(&rect, data, a);
/* widget itself */
ui_draw_menu_item(&data->fstyle, &rect, data->items.names[a], data->items.icons[a],
(a == data->active) ? UI_ACTIVE : 0, data->use_sep);
}
/* indicate more */
if (data->items.more) {
2012-03-30 01:51:25 +00:00
ui_searchbox_butrect(&rect, data, data->items.maxitem - 1);
glEnable(GL_BLEND);
UI_icon_draw((BLI_rcti_size_x(&rect)) / 2, rect.ymin - 9, ICON_TRIA_DOWN);
glDisable(GL_BLEND);
}
if (data->items.offset) {
ui_searchbox_butrect(&rect, data, 0);
glEnable(GL_BLEND);
UI_icon_draw((BLI_rcti_size_x(&rect)) / 2, rect.ymax - 7, ICON_TRIA_UP);
glDisable(GL_BLEND);
}
}
}
}
static void ui_searchbox_region_free_cb(ARegion *ar)
{
2012-03-30 01:51:25 +00:00
uiSearchboxData *data = ar->regiondata;
int a;
/* free search data */
for (a = 0; a < data->items.maxitem; a++) {
MEM_freeN(data->items.names[a]);
}
MEM_freeN(data->items.names);
MEM_freeN(data->items.pointers);
MEM_freeN(data->items.icons);
MEM_freeN(data);
2012-03-30 01:51:25 +00:00
ar->regiondata = NULL;
}
ARegion *ui_searchbox_create(bContext *C, ARegion *butregion, uiBut *but)
{
wmWindow *win = CTX_wm_window(C);
uiStyle *style = UI_style_get();
static ARegionType type;
ARegion *ar;
uiSearchboxData *data;
2012-03-30 01:51:25 +00:00
float aspect = but->block->aspect;
rctf rect_fl;
rcti rect_i;
const int margin = UI_POPUP_MARGIN;
int winx /*, winy */, ofsx, ofsy;
int i;
/* create area region */
ar = ui_region_temp_add(CTX_wm_screen(C));
memset(&type, 0, sizeof(ARegionType));
2012-03-30 01:51:25 +00:00
type.draw = ui_searchbox_region_draw_cb;
type.free = ui_searchbox_region_free_cb;
type.regionid = RGN_TYPE_TEMPORARY;
2012-03-30 01:51:25 +00:00
ar->type = &type;
/* create searchbox data */
2012-03-30 01:51:25 +00:00
data = MEM_callocN(sizeof(uiSearchboxData), "uiSearchboxData");
/* set font, get bb */
2012-03-30 01:51:25 +00:00
data->fstyle = style->widget; /* copy struct */
data->fstyle.align = UI_STYLE_TEXT_CENTER;
ui_fontscale(&data->fstyle.points, aspect);
UI_fontstyle_set(&data->fstyle);
2012-03-30 01:51:25 +00:00
ar->regiondata = data;
/* special case, hardcoded feature, not draw backdrop when called from menus,
* assume for design that popup already added it */
if (but->block->flag & UI_BLOCK_SEARCH_MENU)
data->noback = true;
if (but->a1 > 0 && but->a2 > 0) {
data->preview = true;
data->prv_rows = but->a1;
data->prv_cols = but->a2;
}
/* only show key shortcuts when needed (not rna buttons) [#36699] */
if (but->rnaprop == NULL) {
data->use_sep = true;
}
/* compute position */
if (but->block->flag & UI_BLOCK_SEARCH_MENU) {
const int search_but_h = BLI_rctf_size_y(&but->rect) + 10;
/* this case is search menu inside other menu */
/* we copy region size */
2012-03-30 01:51:25 +00:00
ar->winrct = butregion->winrct;
/* widget rect, in region coords */
data->bbox.xmin = margin;
data->bbox.xmax = BLI_rcti_size_x(&ar->winrct) - margin;
data->bbox.ymin = margin;
data->bbox.ymax = BLI_rcti_size_y(&ar->winrct) - margin;
/* check if button is lower half */
if (but->rect.ymax < BLI_rctf_cent_y(&but->block->rect)) {
data->bbox.ymin += search_but_h;
}
else {
data->bbox.ymax -= search_but_h;
}
}
else {
const int searchbox_width = UI_searchbox_size_x();
rect_fl.xmin = but->rect.xmin - 5; /* align text with button */
rect_fl.xmax = but->rect.xmax + 5; /* symmetrical */
rect_fl.ymax = but->rect.ymin;
rect_fl.ymin = rect_fl.ymax - UI_searchbox_size_y();
2012-03-30 01:51:25 +00:00
ofsx = (but->block->panel) ? but->block->panel->ofsx : 0;
ofsy = (but->block->panel) ? but->block->panel->ofsy : 0;
BLI_rctf_translate(&rect_fl, ofsx, ofsy);
/* minimal width */
if (BLI_rctf_size_x(&rect_fl) < searchbox_width) {
rect_fl.xmax = rect_fl.xmin + searchbox_width;
}
/* copy to int, gets projected if possible too */
BLI_rcti_rctf_copy(&rect_i, &rect_fl);
if (butregion->v2d.cur.xmin != butregion->v2d.cur.xmax) {
UI_view2d_view_to_region_rcti(&butregion->v2d, &rect_fl, &rect_i);
}
BLI_rcti_translate(&rect_i, butregion->winrct.xmin, butregion->winrct.ymin);
winx = WM_window_pixels_x(win);
// winy = WM_window_pixels_y(win); /* UNUSED */
//wm_window_get_size(win, &winx, &winy);
if (rect_i.xmax > winx) {
/* super size */
if (rect_i.xmax > winx + rect_i.xmin) {
rect_i.xmax = winx;
rect_i.xmin = 0;
}
else {
rect_i.xmin -= rect_i.xmax - winx;
rect_i.xmax = winx;
}
}
if (rect_i.ymin < 0) {
int newy1 = but->rect.ymax + ofsy;
if (butregion->v2d.cur.xmin != butregion->v2d.cur.xmax)
newy1 = UI_view2d_view_to_region_y(&butregion->v2d, newy1);
newy1 += butregion->winrct.ymin;
rect_i.ymax = BLI_rcti_size_y(&rect_i) + newy1;
rect_i.ymin = newy1;
}
/* widget rect, in region coords */
data->bbox.xmin = margin;
data->bbox.xmax = BLI_rcti_size_x(&rect_i) + margin;
data->bbox.ymin = margin;
data->bbox.ymax = BLI_rcti_size_y(&rect_i) + margin;
/* region bigger for shadow */
ar->winrct.xmin = rect_i.xmin - margin;
ar->winrct.xmax = rect_i.xmax + margin;
ar->winrct.ymin = rect_i.ymin - margin;
ar->winrct.ymax = rect_i.ymax;
}
/* adds subwindow */
ED_region_init(C, ar);
/* notify change and redraw */
ED_region_tag_redraw(ar);
/* prepare search data */
if (data->preview) {
2012-03-30 01:51:25 +00:00
data->items.maxitem = data->prv_rows * data->prv_cols;
}
else {
2012-03-30 01:51:25 +00:00
data->items.maxitem = SEARCH_ITEMS;
}
2012-03-30 01:51:25 +00:00
data->items.maxstrlen = but->hardmax;
data->items.totitem = 0;
data->items.names = MEM_callocN(data->items.maxitem * sizeof(void *), "search names");
data->items.pointers = MEM_callocN(data->items.maxitem * sizeof(void *), "search pointers");
data->items.icons = MEM_callocN(data->items.maxitem * sizeof(int), "search icons");
for (i = 0; i < data->items.maxitem; i++)
data->items.names[i] = MEM_callocN(but->hardmax + 1, "search pointers");
return ar;
}
void ui_searchbox_free(bContext *C, ARegion *ar)
{
ui_region_temp_remove(C, CTX_wm_screen(C), ar);
}
/* sets red alert if button holds a string it can't find */
/* XXX weak: search_func adds all partial matches... */
void ui_but_search_refresh(uiBut *but)
{
uiSearchItems *items;
int x1;
/* possibly very large lists (such as ID datablocks) only
* only validate string RNA buts (not pointers) */
if (but->rnaprop && RNA_property_type(but->rnaprop) != PROP_STRING) {
return;
}
2012-03-30 01:51:25 +00:00
items = MEM_callocN(sizeof(uiSearchItems), "search items");
/* setup search struct */
2012-03-30 01:51:25 +00:00
items->maxitem = 10;
items->maxstrlen = 256;
items->names = MEM_callocN(items->maxitem * sizeof(void *), "search names");
for (x1 = 0; x1 < items->maxitem; x1++)
items->names[x1] = MEM_callocN(but->hardmax + 1, "search names");
but->search_func(but->block->evil_C, but->search_arg, but->drawstr, items);
/* only redalert when we are sure of it, this can miss cases when >10 matches */
if (items->totitem == 0) {
UI_but_flag_enable(but, UI_BUT_REDALERT);
}
2012-03-30 01:51:25 +00:00
else if (items->more == 0) {
if (UI_search_items_find_index(items, but->drawstr) == -1) {
UI_but_flag_enable(but, UI_BUT_REDALERT);
}
}
for (x1 = 0; x1 < items->maxitem; x1++) {
MEM_freeN(items->names[x1]);
}
MEM_freeN(items->names);
MEM_freeN(items);
}
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
/************************* Creating Menu Blocks **********************/
/* position block relative to but, result is in window space */
static void ui_block_position(wmWindow *window, ARegion *butregion, uiBut *but, uiBlock *block)
{
uiBut *bt;
uiSafetyRct *saferct;
rctf butrct;
2011-08-15 03:41:31 +00:00
/*float aspect;*/ /*UNUSED*/
2012-03-30 01:51:25 +00:00
int xsize, ysize, xof = 0, yof = 0, center;
short dir1 = 0, dir2 = 0;
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
/* transform to window coordinates, using the source button region/block */
ui_block_to_window_rctf(butregion, but->block, &butrct, &but->rect);
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
/* widget_roundbox_set has this correction too, keep in sync */
if (but->type != UI_BTYPE_PULLDOWN) {
if (but->drawflag & UI_BUT_ALIGN_TOP)
Holiday coding log :) Nice formatted version (pictures soon): http://wiki.blender.org/index.php/Dev:Ref/Release_Notes/2.66/Usability Short list of main changes: - Transparent region option (over main region), added code to blend in/out such panels. - Min size window now 640 x 480 - Fixed DPI for ui - lots of cleanup and changes everywhere. Icon image need correct size still, layer-in-use icon needs remake. - Macbook retina support, use command line --no-native-pixels to disable it - Timeline Marker label was drawing wrong - Trackpad and magic mouse: supports zoom (hold ctrl) - Fix for splash position: removed ghost function and made window size update after creation immediate - Fast undo buffer save now adds UI as well. Could be checked for regular file save even... Quit.blend and temp file saving use this now. - Dixed filename in window on reading quit.blend or temp saves, and they now add a warning in window title: "(Recovered)" - New Userpref option "Keep Session" - this always saves quit.blend, and loads on start. This allows keeping UI and data without actual saves, until you actually save. When you load startup.blend and quit, it recognises the quit.blend as a startup (no file name in header) - Added 3D view copy/paste buffers (selected objects). Shortcuts ctrl-c, ctrl-v (OSX, cmd-c, cmd-v). Coded partial file saving for it. Could be used for other purposes. Todo: use OS clipboards. - User preferences (themes, keymaps, user settings) now can be saved as a separate file. Old option is called "Save Startup File" the new one "Save User Settings". To visualise this difference, the 'save startup file' button has been removed from user preferences window. That option is available as CTRL+U and in File menu still. - OSX: fixed bug that stopped giving mouse events outside window. This also fixes "Continuous Grab" for OSX. (error since 2009)
2012-12-12 18:58:11 +00:00
butrct.ymax += U.pixelsize;
if (but->drawflag & UI_BUT_ALIGN_LEFT)
Holiday coding log :) Nice formatted version (pictures soon): http://wiki.blender.org/index.php/Dev:Ref/Release_Notes/2.66/Usability Short list of main changes: - Transparent region option (over main region), added code to blend in/out such panels. - Min size window now 640 x 480 - Fixed DPI for ui - lots of cleanup and changes everywhere. Icon image need correct size still, layer-in-use icon needs remake. - Macbook retina support, use command line --no-native-pixels to disable it - Timeline Marker label was drawing wrong - Trackpad and magic mouse: supports zoom (hold ctrl) - Fix for splash position: removed ghost function and made window size update after creation immediate - Fast undo buffer save now adds UI as well. Could be checked for regular file save even... Quit.blend and temp file saving use this now. - Dixed filename in window on reading quit.blend or temp saves, and they now add a warning in window title: "(Recovered)" - New Userpref option "Keep Session" - this always saves quit.blend, and loads on start. This allows keeping UI and data without actual saves, until you actually save. When you load startup.blend and quit, it recognises the quit.blend as a startup (no file name in header) - Added 3D view copy/paste buffers (selected objects). Shortcuts ctrl-c, ctrl-v (OSX, cmd-c, cmd-v). Coded partial file saving for it. Could be used for other purposes. Todo: use OS clipboards. - User preferences (themes, keymaps, user settings) now can be saved as a separate file. Old option is called "Save Startup File" the new one "Save User Settings". To visualise this difference, the 'save startup file' button has been removed from user preferences window. That option is available as CTRL+U and in File menu still. - OSX: fixed bug that stopped giving mouse events outside window. This also fixes "Continuous Grab" for OSX. (error since 2009)
2012-12-12 18:58:11 +00:00
butrct.xmin -= U.pixelsize;
}
Holiday coding log :) Nice formatted version (pictures soon): http://wiki.blender.org/index.php/Dev:Ref/Release_Notes/2.66/Usability Short list of main changes: - Transparent region option (over main region), added code to blend in/out such panels. - Min size window now 640 x 480 - Fixed DPI for ui - lots of cleanup and changes everywhere. Icon image need correct size still, layer-in-use icon needs remake. - Macbook retina support, use command line --no-native-pixels to disable it - Timeline Marker label was drawing wrong - Trackpad and magic mouse: supports zoom (hold ctrl) - Fix for splash position: removed ghost function and made window size update after creation immediate - Fast undo buffer save now adds UI as well. Could be checked for regular file save even... Quit.blend and temp file saving use this now. - Dixed filename in window on reading quit.blend or temp saves, and they now add a warning in window title: "(Recovered)" - New Userpref option "Keep Session" - this always saves quit.blend, and loads on start. This allows keeping UI and data without actual saves, until you actually save. When you load startup.blend and quit, it recognises the quit.blend as a startup (no file name in header) - Added 3D view copy/paste buffers (selected objects). Shortcuts ctrl-c, ctrl-v (OSX, cmd-c, cmd-v). Coded partial file saving for it. Could be used for other purposes. Todo: use OS clipboards. - User preferences (themes, keymaps, user settings) now can be saved as a separate file. Old option is called "Save Startup File" the new one "Save User Settings". To visualise this difference, the 'save startup file' button has been removed from user preferences window. That option is available as CTRL+U and in File menu still. - OSX: fixed bug that stopped giving mouse events outside window. This also fixes "Continuous Grab" for OSX. (error since 2009)
2012-12-12 18:58:11 +00:00
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
/* calc block rect */
if (block->rect.xmin == 0.0f && block->rect.xmax == 0.0f) {
if (block->buttons.first) {
BLI_rctf_init_minmax(&block->rect);
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
for (bt = block->buttons.first; bt; bt = bt->next) {
BLI_rctf_union(&block->rect, &bt->rect);
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
}
}
else {
/* we're nice and allow empty blocks too */
block->rect.xmin = block->rect.ymin = 0;
block->rect.xmax = block->rect.ymax = 20;
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
}
}
Holiday coding log :) Nice formatted version (pictures soon): http://wiki.blender.org/index.php/Dev:Ref/Release_Notes/2.66/Usability Short list of main changes: - Transparent region option (over main region), added code to blend in/out such panels. - Min size window now 640 x 480 - Fixed DPI for ui - lots of cleanup and changes everywhere. Icon image need correct size still, layer-in-use icon needs remake. - Macbook retina support, use command line --no-native-pixels to disable it - Timeline Marker label was drawing wrong - Trackpad and magic mouse: supports zoom (hold ctrl) - Fix for splash position: removed ghost function and made window size update after creation immediate - Fast undo buffer save now adds UI as well. Could be checked for regular file save even... Quit.blend and temp file saving use this now. - Dixed filename in window on reading quit.blend or temp saves, and they now add a warning in window title: "(Recovered)" - New Userpref option "Keep Session" - this always saves quit.blend, and loads on start. This allows keeping UI and data without actual saves, until you actually save. When you load startup.blend and quit, it recognises the quit.blend as a startup (no file name in header) - Added 3D view copy/paste buffers (selected objects). Shortcuts ctrl-c, ctrl-v (OSX, cmd-c, cmd-v). Coded partial file saving for it. Could be used for other purposes. Todo: use OS clipboards. - User preferences (themes, keymaps, user settings) now can be saved as a separate file. Old option is called "Save Startup File" the new one "Save User Settings". To visualise this difference, the 'save startup file' button has been removed from user preferences window. That option is available as CTRL+U and in File menu still. - OSX: fixed bug that stopped giving mouse events outside window. This also fixes "Continuous Grab" for OSX. (error since 2009)
2012-12-12 18:58:11 +00:00
/* aspect = (float)(BLI_rcti_size_x(&block->rect) + 4);*/ /*UNUSED*/
ui_block_to_window_rctf(butregion, but->block, &block->rect, &block->rect);
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
//block->rect.xmin -= 2.0; block->rect.ymin -= 2.0;
//block->rect.xmax += 2.0; block->rect.ymax += 2.0;
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
Holiday coding log :) Nice formatted version (pictures soon): http://wiki.blender.org/index.php/Dev:Ref/Release_Notes/2.66/Usability Short list of main changes: - Transparent region option (over main region), added code to blend in/out such panels. - Min size window now 640 x 480 - Fixed DPI for ui - lots of cleanup and changes everywhere. Icon image need correct size still, layer-in-use icon needs remake. - Macbook retina support, use command line --no-native-pixels to disable it - Timeline Marker label was drawing wrong - Trackpad and magic mouse: supports zoom (hold ctrl) - Fix for splash position: removed ghost function and made window size update after creation immediate - Fast undo buffer save now adds UI as well. Could be checked for regular file save even... Quit.blend and temp file saving use this now. - Dixed filename in window on reading quit.blend or temp saves, and they now add a warning in window title: "(Recovered)" - New Userpref option "Keep Session" - this always saves quit.blend, and loads on start. This allows keeping UI and data without actual saves, until you actually save. When you load startup.blend and quit, it recognises the quit.blend as a startup (no file name in header) - Added 3D view copy/paste buffers (selected objects). Shortcuts ctrl-c, ctrl-v (OSX, cmd-c, cmd-v). Coded partial file saving for it. Could be used for other purposes. Todo: use OS clipboards. - User preferences (themes, keymaps, user settings) now can be saved as a separate file. Old option is called "Save Startup File" the new one "Save User Settings". To visualise this difference, the 'save startup file' button has been removed from user preferences window. That option is available as CTRL+U and in File menu still. - OSX: fixed bug that stopped giving mouse events outside window. This also fixes "Continuous Grab" for OSX. (error since 2009)
2012-12-12 18:58:11 +00:00
xsize = BLI_rctf_size_x(&block->rect) + 0.2f * UI_UNIT_X; /* 4 for shadow */
ysize = BLI_rctf_size_y(&block->rect) + 0.2f * UI_UNIT_Y;
2012-05-27 19:40:36 +00:00
/* aspect /= (float)xsize;*/ /*UNUSED*/
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
{
bool left = 0, right = 0, top = 0, down = 0;
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
int winx, winy;
// int offscreen;
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
Holiday coding log :) Nice formatted version (pictures soon): http://wiki.blender.org/index.php/Dev:Ref/Release_Notes/2.66/Usability Short list of main changes: - Transparent region option (over main region), added code to blend in/out such panels. - Min size window now 640 x 480 - Fixed DPI for ui - lots of cleanup and changes everywhere. Icon image need correct size still, layer-in-use icon needs remake. - Macbook retina support, use command line --no-native-pixels to disable it - Timeline Marker label was drawing wrong - Trackpad and magic mouse: supports zoom (hold ctrl) - Fix for splash position: removed ghost function and made window size update after creation immediate - Fast undo buffer save now adds UI as well. Could be checked for regular file save even... Quit.blend and temp file saving use this now. - Dixed filename in window on reading quit.blend or temp saves, and they now add a warning in window title: "(Recovered)" - New Userpref option "Keep Session" - this always saves quit.blend, and loads on start. This allows keeping UI and data without actual saves, until you actually save. When you load startup.blend and quit, it recognises the quit.blend as a startup (no file name in header) - Added 3D view copy/paste buffers (selected objects). Shortcuts ctrl-c, ctrl-v (OSX, cmd-c, cmd-v). Coded partial file saving for it. Could be used for other purposes. Todo: use OS clipboards. - User preferences (themes, keymaps, user settings) now can be saved as a separate file. Old option is called "Save Startup File" the new one "Save User Settings". To visualise this difference, the 'save startup file' button has been removed from user preferences window. That option is available as CTRL+U and in File menu still. - OSX: fixed bug that stopped giving mouse events outside window. This also fixes "Continuous Grab" for OSX. (error since 2009)
2012-12-12 18:58:11 +00:00
winx = WM_window_pixels_x(window);
winy = WM_window_pixels_y(window);
// wm_window_get_size(window, &winx, &winy);
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
if (block->direction & UI_DIR_CENTER_Y) {
center = ysize / 2;
}
else {
center = 0;
}
/* check if there's space at all */
2012-03-30 01:51:25 +00:00
if (butrct.xmin - xsize > 0.0f) left = 1;
if (butrct.xmax + xsize < winx) right = 1;
if (butrct.ymin - ysize + center > 0.0f) down = 1;
if (butrct.ymax + ysize - center < winy) top = 1;
if (top == 0 && down == 0) {
if (butrct.ymin - ysize < winy - butrct.ymax - ysize)
top = 1;
else
2012-03-30 01:51:25 +00:00
down = 1;
}
dir1 = (block->direction & UI_DIR_ALL);
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
/* secundary directions */
if (dir1 & (UI_DIR_UP | UI_DIR_DOWN)) {
if (dir1 & UI_DIR_LEFT) dir2 = UI_DIR_LEFT;
else if (dir1 & UI_DIR_RIGHT) dir2 = UI_DIR_RIGHT;
dir1 &= (UI_DIR_UP | UI_DIR_DOWN);
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
}
if ((dir2 == 0) && (dir1 == UI_DIR_LEFT || dir1 == UI_DIR_RIGHT)) dir2 = UI_DIR_DOWN;
if ((dir2 == 0) && (dir1 == UI_DIR_UP || dir1 == UI_DIR_DOWN)) dir2 = UI_DIR_LEFT;
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
2012-03-18 07:38:51 +00:00
/* no space at all? don't change */
if (left || right) {
if (dir1 == UI_DIR_LEFT && left == 0) dir1 = UI_DIR_RIGHT;
if (dir1 == UI_DIR_RIGHT && right == 0) dir1 = UI_DIR_LEFT;
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
/* this is aligning, not append! */
if (dir2 == UI_DIR_LEFT && right == 0) dir2 = UI_DIR_RIGHT;
if (dir2 == UI_DIR_RIGHT && left == 0) dir2 = UI_DIR_LEFT;
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
}
if (down || top) {
if (dir1 == UI_DIR_UP && top == 0) dir1 = UI_DIR_DOWN;
if (dir1 == UI_DIR_DOWN && down == 0) dir1 = UI_DIR_UP;
BLI_assert(dir2 != UI_DIR_UP);
// if (dir2 == UI_DIR_UP && top == 0) dir2 = UI_DIR_DOWN;
if (dir2 == UI_DIR_DOWN && down == 0) dir2 = UI_DIR_UP;
2012-03-30 01:51:25 +00:00
}
if (dir1 == UI_DIR_LEFT) {
xof = butrct.xmin - block->rect.xmax;
if (dir2 == UI_DIR_UP) yof = butrct.ymin - block->rect.ymin - center - MENU_PADDING;
else yof = butrct.ymax - block->rect.ymax + center + MENU_PADDING;
2012-03-30 01:51:25 +00:00
}
else if (dir1 == UI_DIR_RIGHT) {
xof = butrct.xmax - block->rect.xmin;
if (dir2 == UI_DIR_UP) yof = butrct.ymin - block->rect.ymin - center - MENU_PADDING;
else yof = butrct.ymax - block->rect.ymax + center + MENU_PADDING;
2012-03-30 01:51:25 +00:00
}
else if (dir1 == UI_DIR_UP) {
yof = butrct.ymax - block->rect.ymin;
if (dir2 == UI_DIR_RIGHT) xof = butrct.xmax - block->rect.xmax;
else xof = butrct.xmin - block->rect.xmin;
2012-08-19 10:41:27 +00:00
/* changed direction? */
2012-03-30 01:51:25 +00:00
if ((dir1 & block->direction) == 0) {
UI_block_order_flip(block);
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
}
}
else if (dir1 == UI_DIR_DOWN) {
yof = butrct.ymin - block->rect.ymax;
if (dir2 == UI_DIR_RIGHT) xof = butrct.xmax - block->rect.xmax;
else xof = butrct.xmin - block->rect.xmin;
2012-08-19 10:41:27 +00:00
/* changed direction? */
2012-03-30 01:51:25 +00:00
if ((dir1 & block->direction) == 0) {
UI_block_order_flip(block);
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
}
}
/* and now we handle the exception; no space below or to top */
2012-03-30 01:51:25 +00:00
if (top == 0 && down == 0) {
if (dir1 == UI_DIR_LEFT || dir1 == UI_DIR_RIGHT) {
2012-08-19 10:41:27 +00:00
/* align with bottom of screen */
2012-10-26 04:14:10 +00:00
// yof = ysize; (not with menu scrolls)
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
}
}
/* or no space left or right */
2012-03-30 01:51:25 +00:00
if (left == 0 && right == 0) {
if (dir1 == UI_DIR_UP || dir1 == UI_DIR_DOWN) {
2012-08-19 10:41:27 +00:00
/* align with left size of screen */
xof = -block->rect.xmin + 5;
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
}
}
#if 0
/* clamp to window bounds, could be made into an option if its ever annoying */
if ( (offscreen = (block->rect.ymin + yof)) < 0) yof -= offscreen; /* bottom */
else if ((offscreen = (block->rect.ymax + yof) - winy) > 0) yof -= offscreen; /* top */
if ( (offscreen = (block->rect.xmin + xof)) < 0) xof -= offscreen; /* left */
else if ((offscreen = (block->rect.xmax + xof) - winx) > 0) xof -= offscreen; /* right */
#endif
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
}
/* apply offset, buttons in window coords */
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
2012-03-30 01:51:25 +00:00
for (bt = block->buttons.first; bt; bt = bt->next) {
ui_block_to_window_rctf(butregion, but->block, &bt->rect, &bt->rect);
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
BLI_rctf_translate(&bt->rect, xof, yof);
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
/* ui_but_update recalculates drawstring size in pixels */
ui_but_update(bt);
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
}
BLI_rctf_translate(&block->rect, xof, yof);
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
/* safety calculus */
{
const float midx = BLI_rctf_cent_x(&butrct);
const float midy = BLI_rctf_cent_y(&butrct);
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
/* when you are outside parent button, safety there should be smaller */
/* parent button to left */
if (midx < block->rect.xmin) block->safety.xmin = block->rect.xmin - 3;
else block->safety.xmin = block->rect.xmin - 40;
/* parent button to right */
if (midx > block->rect.xmax) block->safety.xmax = block->rect.xmax + 3;
else block->safety.xmax = block->rect.xmax + 40;
/* parent button on bottom */
if (midy < block->rect.ymin) block->safety.ymin = block->rect.ymin - 3;
else block->safety.ymin = block->rect.ymin - 40;
/* parent button on top */
if (midy > block->rect.ymax) block->safety.ymax = block->rect.ymax + 3;
else block->safety.ymax = block->rect.ymax + 40;
/* exception for switched pulldowns... */
2012-03-30 01:51:25 +00:00
if (dir1 && (dir1 & block->direction) == 0) {
if (dir2 == UI_DIR_RIGHT) block->safety.xmax = block->rect.xmax + 3;
if (dir2 == UI_DIR_LEFT) block->safety.xmin = block->rect.xmin - 3;
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
}
2012-03-30 01:51:25 +00:00
block->direction = dir1;
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
}
/* keep a list of these, needed for pulldown menus */
2012-03-30 01:51:25 +00:00
saferct = MEM_callocN(sizeof(uiSafetyRct), "uiSafetyRct");
saferct->parent = butrct;
saferct->safety = block->safety;
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
BLI_freelistN(&block->saferct);
BLI_duplicatelist(&block->saferct, &but->block->saferct);
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
BLI_addhead(&block->saferct, saferct);
}
static void ui_block_region_draw(const bContext *C, ARegion *ar)
{
uiBlock *block;
if (ar->do_draw & RGN_DRAW_REFRESH_UI) {
uiBlock *block_next;
ar->do_draw &= ~RGN_DRAW_REFRESH_UI;
for (block = ar->uiblocks.first; block; block = block_next) {
block_next = block->next;
ui_popup_block_refresh((bContext *)C, block->handle, NULL, NULL);
}
}
2012-03-30 01:51:25 +00:00
for (block = ar->uiblocks.first; block; block = block->next)
UI_block_draw(C, block);
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
}
static void ui_popup_block_clip(wmWindow *window, uiBlock *block)
{
uiBut *bt;
float xofs = 0.0f;
int width = UI_SCREEN_MARGIN;
int winx, winy;
if (block->flag & UI_BLOCK_NO_WIN_CLIP) {
return;
}
Holiday coding log :) Nice formatted version (pictures soon): http://wiki.blender.org/index.php/Dev:Ref/Release_Notes/2.66/Usability Short list of main changes: - Transparent region option (over main region), added code to blend in/out such panels. - Min size window now 640 x 480 - Fixed DPI for ui - lots of cleanup and changes everywhere. Icon image need correct size still, layer-in-use icon needs remake. - Macbook retina support, use command line --no-native-pixels to disable it - Timeline Marker label was drawing wrong - Trackpad and magic mouse: supports zoom (hold ctrl) - Fix for splash position: removed ghost function and made window size update after creation immediate - Fast undo buffer save now adds UI as well. Could be checked for regular file save even... Quit.blend and temp file saving use this now. - Dixed filename in window on reading quit.blend or temp saves, and they now add a warning in window title: "(Recovered)" - New Userpref option "Keep Session" - this always saves quit.blend, and loads on start. This allows keeping UI and data without actual saves, until you actually save. When you load startup.blend and quit, it recognises the quit.blend as a startup (no file name in header) - Added 3D view copy/paste buffers (selected objects). Shortcuts ctrl-c, ctrl-v (OSX, cmd-c, cmd-v). Coded partial file saving for it. Could be used for other purposes. Todo: use OS clipboards. - User preferences (themes, keymaps, user settings) now can be saved as a separate file. Old option is called "Save Startup File" the new one "Save User Settings". To visualise this difference, the 'save startup file' button has been removed from user preferences window. That option is available as CTRL+U and in File menu still. - OSX: fixed bug that stopped giving mouse events outside window. This also fixes "Continuous Grab" for OSX. (error since 2009)
2012-12-12 18:58:11 +00:00
winx = WM_window_pixels_x(window);
winy = WM_window_pixels_y(window);
/* shift menus to right if outside of view */
if (block->rect.xmin < width) {
xofs = (width - block->rect.xmin);
block->rect.xmin += xofs;
block->rect.xmax += xofs;
}
/* or shift to left if outside of view */
if (block->rect.xmax > winx - width) {
xofs = winx - width - block->rect.xmax;
block->rect.xmin += xofs;
block->rect.xmax += xofs;
}
if (block->rect.ymin < width)
block->rect.ymin = width;
if (block->rect.ymax > winy - UI_POPUP_MENU_TOP)
block->rect.ymax = winy - UI_POPUP_MENU_TOP;
/* ensure menu items draw inside left/right boundary */
for (bt = block->buttons.first; bt; bt = bt->next) {
bt->rect.xmin += xofs;
bt->rect.xmax += xofs;
}
}
void ui_popup_block_scrolltest(uiBlock *block)
{
uiBut *bt;
2012-03-30 01:51:25 +00:00
block->flag &= ~(UI_BLOCK_CLIPBOTTOM | UI_BLOCK_CLIPTOP);
2012-03-30 01:51:25 +00:00
for (bt = block->buttons.first; bt; bt = bt->next)
bt->flag &= ~UI_SCROLLED;
2012-03-30 01:51:25 +00:00
if (block->buttons.first == block->buttons.last)
return;
/* mark buttons that are outside boundary */
2012-03-30 01:51:25 +00:00
for (bt = block->buttons.first; bt; bt = bt->next) {
if (bt->rect.ymin < block->rect.ymin) {
bt->flag |= UI_SCROLLED;
block->flag |= UI_BLOCK_CLIPBOTTOM;
}
if (bt->rect.ymax > block->rect.ymax) {
bt->flag |= UI_SCROLLED;
block->flag |= UI_BLOCK_CLIPTOP;
}
}
/* mark buttons overlapping arrows, if we have them */
for (bt = block->buttons.first; bt; bt = bt->next) {
if (block->flag & UI_BLOCK_CLIPBOTTOM) {
if (bt->rect.ymin < block->rect.ymin + UI_MENU_SCROLL_ARROW)
bt->flag |= UI_SCROLLED;
}
if (block->flag & UI_BLOCK_CLIPTOP) {
if (bt->rect.ymax > block->rect.ymax - UI_MENU_SCROLL_ARROW)
bt->flag |= UI_SCROLLED;
}
}
}
static void ui_popup_block_remove(bContext *C, uiPopupBlockHandle *handle)
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
{
ui_region_temp_remove(C, CTX_wm_screen(C), handle->region);
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
if (handle->scrolltimer)
WM_event_remove_timer(CTX_wm_manager(C), CTX_wm_window(C), handle->scrolltimer);
}
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
/**
2015-06-16 10:18:45 +10:00
* Called for creating new popups and refreshing existing ones.
*/
uiBlock *ui_popup_block_refresh(
bContext *C, uiPopupBlockHandle *handle,
ARegion *butregion, uiBut *but)
{
const int margin = UI_POPUP_MARGIN;
wmWindow *window = CTX_wm_window(C);
ARegion *ar = handle->region;
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
uiBlockCreateFunc create_func = handle->popup_create_vars.create_func;
uiBlockHandleCreateFunc handle_create_func = handle->popup_create_vars.handle_create_func;
void *arg = handle->popup_create_vars.arg;
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
uiBlock *block_old = ar->uiblocks.first;
uiBlock *block;
#ifdef DEBUG
wmEvent *event_back = window->eventstate;
#endif
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
/* create ui block */
if (create_func)
block = create_func(C, ar, arg);
else
2012-03-30 01:51:25 +00:00
block = handle_create_func(C, handle, arg);
UI: Layout Engine * Buttons are now created first, and after that the layout is computed. This means the layout engine now works at button level, and makes it easier to write templates. Otherwise you had to store all info and create the buttons later. * Added interface_templates.c as a separate file to put templates in. These can contain regular buttons, and can be put in a Free layout, which means you can specify manual coordinates, but still get nested correct inside other layouts. * API was changed to allow better nesting. Previously items were added in the last added layout specifier, i.e. one level up in the layout hierarchy. This doesn't work well in always, so now when creating things like rows or columns it always returns a layout which you have to add the items in. All py scripts were updated to follow this. * Computing the layout now goes in two passes, first estimating the required width/height of all nested layouts, and then in the second pass using the results of that to decide on the actual locations. * Enum and array buttons now follow the direction of the layout, i.e. they are vertical or horizontal depending if they are in a column or row. * Color properties now get a color picker, and only get the additional RGB sliders with Expand=True. * File/directory string properties now get a button next to them for opening the file browse, though this is not implemented yet. * Layout items can now be aligned, set align=True when creating a column, row, etc. * Buttons now get a minimum width of one icon (avoids squashing icon buttons). * Moved some more space variables into Style.
2009-05-15 11:19:59 +00:00
/* callbacks _must_ leave this for us, otherwise we can't call UI_block_update_from_old */
BLI_assert(!block->endblock);
/* ensure we don't use mouse coords here! */
#ifdef DEBUG
window->eventstate = NULL;
#endif
if (block->handle) {
UI: Layout Engine * Buttons are now created first, and after that the layout is computed. This means the layout engine now works at button level, and makes it easier to write templates. Otherwise you had to store all info and create the buttons later. * Added interface_templates.c as a separate file to put templates in. These can contain regular buttons, and can be put in a Free layout, which means you can specify manual coordinates, but still get nested correct inside other layouts. * API was changed to allow better nesting. Previously items were added in the last added layout specifier, i.e. one level up in the layout hierarchy. This doesn't work well in always, so now when creating things like rows or columns it always returns a layout which you have to add the items in. All py scripts were updated to follow this. * Computing the layout now goes in two passes, first estimating the required width/height of all nested layouts, and then in the second pass using the results of that to decide on the actual locations. * Enum and array buttons now follow the direction of the layout, i.e. they are vertical or horizontal depending if they are in a column or row. * Color properties now get a color picker, and only get the additional RGB sliders with Expand=True. * File/directory string properties now get a button next to them for opening the file browse, though this is not implemented yet. * Layout items can now be aligned, set align=True when creating a column, row, etc. * Buttons now get a minimum width of one icon (avoids squashing icon buttons). * Moved some more space variables into Style.
2009-05-15 11:19:59 +00:00
memcpy(block->handle, handle, sizeof(uiPopupBlockHandle));
MEM_freeN(handle);
2012-03-30 01:51:25 +00:00
handle = block->handle;
UI: Layout Engine * Buttons are now created first, and after that the layout is computed. This means the layout engine now works at button level, and makes it easier to write templates. Otherwise you had to store all info and create the buttons later. * Added interface_templates.c as a separate file to put templates in. These can contain regular buttons, and can be put in a Free layout, which means you can specify manual coordinates, but still get nested correct inside other layouts. * API was changed to allow better nesting. Previously items were added in the last added layout specifier, i.e. one level up in the layout hierarchy. This doesn't work well in always, so now when creating things like rows or columns it always returns a layout which you have to add the items in. All py scripts were updated to follow this. * Computing the layout now goes in two passes, first estimating the required width/height of all nested layouts, and then in the second pass using the results of that to decide on the actual locations. * Enum and array buttons now follow the direction of the layout, i.e. they are vertical or horizontal depending if they are in a column or row. * Color properties now get a color picker, and only get the additional RGB sliders with Expand=True. * File/directory string properties now get a button next to them for opening the file browse, though this is not implemented yet. * Layout items can now be aligned, set align=True when creating a column, row, etc. * Buttons now get a minimum width of one icon (avoids squashing icon buttons). * Moved some more space variables into Style.
2009-05-15 11:19:59 +00:00
}
else
2012-03-30 01:51:25 +00:00
block->handle = handle;
UI: Layout Engine * Buttons are now created first, and after that the layout is computed. This means the layout engine now works at button level, and makes it easier to write templates. Otherwise you had to store all info and create the buttons later. * Added interface_templates.c as a separate file to put templates in. These can contain regular buttons, and can be put in a Free layout, which means you can specify manual coordinates, but still get nested correct inside other layouts. * API was changed to allow better nesting. Previously items were added in the last added layout specifier, i.e. one level up in the layout hierarchy. This doesn't work well in always, so now when creating things like rows or columns it always returns a layout which you have to add the items in. All py scripts were updated to follow this. * Computing the layout now goes in two passes, first estimating the required width/height of all nested layouts, and then in the second pass using the results of that to decide on the actual locations. * Enum and array buttons now follow the direction of the layout, i.e. they are vertical or horizontal depending if they are in a column or row. * Color properties now get a color picker, and only get the additional RGB sliders with Expand=True. * File/directory string properties now get a button next to them for opening the file browse, though this is not implemented yet. * Layout items can now be aligned, set align=True when creating a column, row, etc. * Buttons now get a minimum width of one icon (avoids squashing icon buttons). * Moved some more space variables into Style.
2009-05-15 11:19:59 +00:00
2012-03-30 01:51:25 +00:00
ar->regiondata = handle;
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
/* set UI_BLOCK_NUMSELECT before UI_block_end() so we get alphanumeric keys assigned */
if (but == NULL) {
block->flag |= UI_BLOCK_POPUP;
}
block->flag |= UI_BLOCK_LOOP;
/* defer this until blocks are translated (below) */
block->oldblock = NULL;
if (!block->endblock)
UI_block_end_ex(C, block, handle->popup_create_vars.event_xy);
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
/* if this is being created from a button */
if (but) {
block->aspect = but->block->aspect;
ui_block_position(window, butregion, but, block);
handle->direction = block->direction;
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
}
else {
uiSafetyRct *saferct;
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
/* keep a list of these, needed for pulldown menus */
2012-03-30 01:51:25 +00:00
saferct = MEM_callocN(sizeof(uiSafetyRct), "uiSafetyRct");
saferct->safety = block->safety;
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
BLI_addhead(&block->saferct, saferct);
}
if (block->flag & UI_BLOCK_RADIAL) {
int win_width = UI_SCREEN_MARGIN;
int winx, winy;
int x_offset = 0, y_offset = 0;
winx = WM_window_pixels_x(window);
winy = WM_window_pixels_y(window);
copy_v2_v2(block->pie_data.pie_center_init, block->pie_data.pie_center_spawned);
/* only try translation if area is large enough */
if (BLI_rctf_size_x(&block->rect) < winx - (2.0f * win_width)) {
if (block->rect.xmin < win_width ) x_offset += win_width - block->rect.xmin;
if (block->rect.xmax > winx - win_width) x_offset += winx - win_width - block->rect.xmax;
}
if (BLI_rctf_size_y(&block->rect) < winy - (2.0f * win_width)) {
if (block->rect.ymin < win_width ) y_offset += win_width - block->rect.ymin;
if (block->rect.ymax > winy - win_width) y_offset += winy - win_width - block->rect.ymax;
}
/* if we are offsetting set up initial data for timeout functionality */
if ((x_offset != 0) || (y_offset != 0)) {
block->pie_data.pie_center_spawned[0] += x_offset;
block->pie_data.pie_center_spawned[1] += y_offset;
ui_block_translate(block, x_offset, y_offset);
if (U.pie_initial_timeout > 0)
block->pie_data.flags |= UI_PIE_INITIAL_DIRECTION;
}
ar->winrct.xmin = 0;
ar->winrct.xmax = winx;
ar->winrct.ymin = 0;
ar->winrct.ymax = winy;
ui_block_calc_pie_segment(block, block->pie_data.pie_center_init);
/* lastly set the buttons at the center of the pie menu, ready for animation */
if (U.pie_animation_timeout > 0) {
2015-11-23 10:01:54 +11:00
for (uiBut *but_iter = block->buttons.first; but_iter; but_iter = but_iter->next) {
if (but_iter->pie_dir != UI_RADIAL_NONE) {
BLI_rctf_recenter(&but_iter->rect, UNPACK2(block->pie_data.pie_center_spawned));
}
}
}
}
else {
/* clip block with window boundary */
ui_popup_block_clip(window, block);
/* the block and buttons were positioned in window space as in 2.4x, now
* these menu blocks are regions so we bring it back to region space.
* additionally we add some padding for the menu shadow or rounded menus */
ar->winrct.xmin = block->rect.xmin - margin;
ar->winrct.xmax = block->rect.xmax + margin;
ar->winrct.ymin = block->rect.ymin - margin;
ar->winrct.ymax = block->rect.ymax + UI_POPUP_MENU_TOP;
ui_block_translate(block, -ar->winrct.xmin, -ar->winrct.ymin);
}
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
if (block_old) {
block->oldblock = block_old;
UI_block_update_from_old(C, block);
UI_blocklist_free_inactive(C, &ar->uiblocks);
}
/* checks which buttons are visible, sets flags to prevent draw (do after region init) */
ui_popup_block_scrolltest(block);
/* adds subwindow */
ED_region_init(C, ar);
/* get winmat now that we actually have the subwindow */
wmSubWindowSet(window, ar->swinid);
wm_subwindow_matrix_get(window, ar->swinid, block->winmat);
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
/* notify change and redraw */
ED_region_tag_redraw(ar);
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
ED_region_update_rect(C, ar);
#ifdef DEBUG
window->eventstate = event_back;
#endif
return block;
}
2015-05-05 03:13:47 +10:00
uiPopupBlockHandle *ui_popup_block_create(
bContext *C, ARegion *butregion, uiBut *but,
uiBlockCreateFunc create_func, uiBlockHandleCreateFunc handle_create_func,
void *arg)
{
wmWindow *window = CTX_wm_window(C);
static ARegionType type;
ARegion *ar;
uiBlock *block;
uiPopupBlockHandle *handle;
/* create handle */
handle = MEM_callocN(sizeof(uiPopupBlockHandle), "uiPopupBlockHandle");
/* store context for operator */
handle->ctx_area = CTX_wm_area(C);
handle->ctx_region = CTX_wm_region(C);
/* store vars to refresh popup (RGN_DRAW_REFRESH_UI) */
handle->popup_create_vars.create_func = create_func;
handle->popup_create_vars.handle_create_func = handle_create_func;
handle->popup_create_vars.arg = arg;
handle->popup_create_vars.butregion = but ? butregion : NULL;
copy_v2_v2_int(handle->popup_create_vars.event_xy, &window->eventstate->x);
/* create area region */
ar = ui_region_temp_add(CTX_wm_screen(C));
handle->region = ar;
memset(&type, 0, sizeof(ARegionType));
type.draw = ui_block_region_draw;
type.regionid = RGN_TYPE_TEMPORARY;
ar->type = &type;
UI_region_handlers_add(&ar->handlers);
block = ui_popup_block_refresh(C, handle, butregion, but);
handle = block->handle;
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
return handle;
}
void ui_popup_block_free(bContext *C, uiPopupBlockHandle *handle)
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
{
ui_popup_block_remove(C, handle);
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
MEM_freeN(handle);
}
/***************************** Menu Button ***************************/
#if 0
static void ui_warp_pointer(int x, int y)
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
{
/* XXX 2.50 which function to use for this? */
2012-03-08 04:12:11 +00:00
/* OSX has very poor mouse-warp support, it sends events;
* this causes a menu being pressed immediately ... */
2012-03-08 04:12:11 +00:00
# ifndef __APPLE__
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
warp_pointer(x, y);
2012-03-08 04:12:11 +00:00
# endif
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
}
#endif
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
/********************* Color Button ****************/
/* for picker, while editing hsv */
void ui_but_hsv_set(uiBut *but)
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
{
float col[3];
ColorPicker *cpicker = but->custom_data;
float *hsv = cpicker->color_data;
ui_color_picker_to_rgb_v(hsv, col);
ui_but_v3_set(but, col);
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
}
/* Updates all buttons who share the same color picker as the one passed
* also used by small picker, be careful with name checks below... */
static void ui_update_color_picker_buts_rgb(uiBlock *block, ColorPicker *cpicker, const float rgb[3], bool is_display_space)
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
{
uiBut *bt;
float *hsv = cpicker->color_data;
Color Management, Stage 2: Switch color pipeline to use OpenColorIO Replace old color pipeline which was supporting linear/sRGB color spaces only with OpenColorIO-based pipeline. This introduces two configurable color spaces: - Input color space for images and movie clips. This space is used to convert images/movies from color space in which file is saved to Blender's linear space (for float images, byte images are not internally converted, only input space is stored for such images and used later). This setting could be found in image/clip data block settings. - Display color space which defines space in which particular display is working. This settings could be found in scene's Color Management panel. When render result is being displayed on the screen, apart from converting image to display space, some additional conversions could happen. This conversions are: - View, which defines tone curve applying before display transformation. These are different ways to view the image on the same display device. For example it could be used to emulate film view on sRGB display. - Exposure affects on image exposure before tone map is applied. - Gamma is post-display gamma correction, could be used to match particular display gamma. - RGB curves are user-defined curves which are applying before display transformation, could be used for different purposes. All this settings by default are only applying on render result and does not affect on other images. If some particular image needs to be affected by this transformation, "View as Render" setting of image data block should be set to truth. Movie clips are always affected by all display transformations. This commit also introduces configurable color space in which sequencer is working. This setting could be found in scene's Color Management panel and it should be used if such stuff as grading needs to be done in color space different from sRGB (i.e. when Film view on sRGB display is use, using VD16 space as sequencer's internal space would make grading working in space which is close to the space using for display). Some technical notes: - Image buffer's float buffer is now always in linear space, even if it was created from 16bit byte images. - Space of byte buffer is stored in image buffer's rect_colorspace property. - Profile of image buffer was removed since it's not longer meaningful. - OpenGL and GLSL is supposed to always work in sRGB space. It is possible to support other spaces, but it's quite large project which isn't so much important. - Legacy Color Management option disabled is emulated by using None display. It could have some regressions, but there's no clear way to avoid them. - If OpenColorIO is disabled on build time, it should make blender behaving in the same way as previous release with color management enabled. More details could be found at this page (more details would be added soon): http://wiki.blender.org/index.php/Dev:Ref/Release_Notes/2.64/Color_Management -- Thanks to Xavier Thomas, Lukas Toene for initial work on OpenColorIO integration and to Brecht van Lommel for some further development and code/ usecase review!
2012-09-15 10:05:07 +00:00
struct ColorManagedDisplay *display = NULL;
/* this is to keep the H and S value when V is equal to zero
* and we are working in HSV mode, of course!
*/
if (is_display_space) {
ui_rgb_to_color_picker_compat_v(rgb, hsv);
}
else {
/* we need to convert to display space to use hsv, because hsv is stored in display space */
float rgb_display[3];
copy_v3_v3(rgb_display, rgb);
ui_block_cm_to_display_space_v3(block, rgb_display);
ui_rgb_to_color_picker_compat_v(rgb_display, hsv);
}
Color Management, Stage 2: Switch color pipeline to use OpenColorIO Replace old color pipeline which was supporting linear/sRGB color spaces only with OpenColorIO-based pipeline. This introduces two configurable color spaces: - Input color space for images and movie clips. This space is used to convert images/movies from color space in which file is saved to Blender's linear space (for float images, byte images are not internally converted, only input space is stored for such images and used later). This setting could be found in image/clip data block settings. - Display color space which defines space in which particular display is working. This settings could be found in scene's Color Management panel. When render result is being displayed on the screen, apart from converting image to display space, some additional conversions could happen. This conversions are: - View, which defines tone curve applying before display transformation. These are different ways to view the image on the same display device. For example it could be used to emulate film view on sRGB display. - Exposure affects on image exposure before tone map is applied. - Gamma is post-display gamma correction, could be used to match particular display gamma. - RGB curves are user-defined curves which are applying before display transformation, could be used for different purposes. All this settings by default are only applying on render result and does not affect on other images. If some particular image needs to be affected by this transformation, "View as Render" setting of image data block should be set to truth. Movie clips are always affected by all display transformations. This commit also introduces configurable color space in which sequencer is working. This setting could be found in scene's Color Management panel and it should be used if such stuff as grading needs to be done in color space different from sRGB (i.e. when Film view on sRGB display is use, using VD16 space as sequencer's internal space would make grading working in space which is close to the space using for display). Some technical notes: - Image buffer's float buffer is now always in linear space, even if it was created from 16bit byte images. - Space of byte buffer is stored in image buffer's rect_colorspace property. - Profile of image buffer was removed since it's not longer meaningful. - OpenGL and GLSL is supposed to always work in sRGB space. It is possible to support other spaces, but it's quite large project which isn't so much important. - Legacy Color Management option disabled is emulated by using None display. It could have some regressions, but there's no clear way to avoid them. - If OpenColorIO is disabled on build time, it should make blender behaving in the same way as previous release with color management enabled. More details could be found at this page (more details would be added soon): http://wiki.blender.org/index.php/Dev:Ref/Release_Notes/2.64/Color_Management -- Thanks to Xavier Thomas, Lukas Toene for initial work on OpenColorIO integration and to Brecht van Lommel for some further development and code/ usecase review!
2012-09-15 10:05:07 +00:00
if (block->color_profile)
display = ui_block_cm_display_get(block);
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
/* this updates button strings, is hackish... but button pointers are on stack of caller function */
2012-03-30 01:51:25 +00:00
for (bt = block->buttons.first; bt; bt = bt->next) {
if (bt->custom_data != cpicker)
continue;
if (bt->rnaprop) {
ui_but_v3_set(bt, rgb);
}
else if (STREQ(bt->str, "Hex: ")) {
float rgb_gamma[3];
2014-04-13 11:26:31 +10:00
unsigned char rgb_gamma_uchar[3];
double intpart;
char col[16];
/* Hex code is assumed to be in sRGB space (coming from other applications, web, etc) */
Color Management, Stage 2: Switch color pipeline to use OpenColorIO Replace old color pipeline which was supporting linear/sRGB color spaces only with OpenColorIO-based pipeline. This introduces two configurable color spaces: - Input color space for images and movie clips. This space is used to convert images/movies from color space in which file is saved to Blender's linear space (for float images, byte images are not internally converted, only input space is stored for such images and used later). This setting could be found in image/clip data block settings. - Display color space which defines space in which particular display is working. This settings could be found in scene's Color Management panel. When render result is being displayed on the screen, apart from converting image to display space, some additional conversions could happen. This conversions are: - View, which defines tone curve applying before display transformation. These are different ways to view the image on the same display device. For example it could be used to emulate film view on sRGB display. - Exposure affects on image exposure before tone map is applied. - Gamma is post-display gamma correction, could be used to match particular display gamma. - RGB curves are user-defined curves which are applying before display transformation, could be used for different purposes. All this settings by default are only applying on render result and does not affect on other images. If some particular image needs to be affected by this transformation, "View as Render" setting of image data block should be set to truth. Movie clips are always affected by all display transformations. This commit also introduces configurable color space in which sequencer is working. This setting could be found in scene's Color Management panel and it should be used if such stuff as grading needs to be done in color space different from sRGB (i.e. when Film view on sRGB display is use, using VD16 space as sequencer's internal space would make grading working in space which is close to the space using for display). Some technical notes: - Image buffer's float buffer is now always in linear space, even if it was created from 16bit byte images. - Space of byte buffer is stored in image buffer's rect_colorspace property. - Profile of image buffer was removed since it's not longer meaningful. - OpenGL and GLSL is supposed to always work in sRGB space. It is possible to support other spaces, but it's quite large project which isn't so much important. - Legacy Color Management option disabled is emulated by using None display. It could have some regressions, but there's no clear way to avoid them. - If OpenColorIO is disabled on build time, it should make blender behaving in the same way as previous release with color management enabled. More details could be found at this page (more details would be added soon): http://wiki.blender.org/index.php/Dev:Ref/Release_Notes/2.64/Color_Management -- Thanks to Xavier Thomas, Lukas Toene for initial work on OpenColorIO integration and to Brecht van Lommel for some further development and code/ usecase review!
2012-09-15 10:05:07 +00:00
copy_v3_v3(rgb_gamma, rgb);
if (display) {
/* make a display version, for Hex code */
IMB_colormanagement_scene_linear_to_display_v3(rgb_gamma, display);
}
if (rgb_gamma[0] > 1.0f) rgb_gamma[0] = modf(rgb_gamma[0], &intpart);
if (rgb_gamma[1] > 1.0f) rgb_gamma[1] = modf(rgb_gamma[1], &intpart);
if (rgb_gamma[2] > 1.0f) rgb_gamma[2] = modf(rgb_gamma[2], &intpart);
2014-04-13 11:26:31 +10:00
rgb_float_to_uchar(rgb_gamma_uchar, rgb_gamma);
BLI_snprintf(col, sizeof(col), "%02X%02X%02X", UNPACK3_EX((unsigned int), rgb_gamma_uchar, ));
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
strcpy(bt->poin, col);
}
2012-03-30 01:51:25 +00:00
else if (bt->str[1] == ' ') {
if (bt->str[0] == 'R') {
ui_but_value_set(bt, rgb[0]);
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
}
2012-03-30 01:51:25 +00:00
else if (bt->str[0] == 'G') {
ui_but_value_set(bt, rgb[1]);
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
}
2012-03-30 01:51:25 +00:00
else if (bt->str[0] == 'B') {
ui_but_value_set(bt, rgb[2]);
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
}
2012-03-30 01:51:25 +00:00
else if (bt->str[0] == 'H') {
ui_but_value_set(bt, hsv[0]);
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
}
2012-03-30 01:51:25 +00:00
else if (bt->str[0] == 'S') {
ui_but_value_set(bt, hsv[1]);
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
}
2012-03-30 01:51:25 +00:00
else if (bt->str[0] == 'V') {
ui_but_value_set(bt, hsv[2]);
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
}
else if (bt->str[0] == 'L') {
ui_but_value_set(bt, hsv[2]);
}
}
ui_but_update(bt);
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
}
}
static void ui_colorpicker_rna_cb(bContext *UNUSED(C), void *bt1, void *UNUSED(arg))
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
{
2012-03-30 01:51:25 +00:00
uiBut *but = (uiBut *)bt1;
uiPopupBlockHandle *popup = but->block->handle;
PropertyRNA *prop = but->rnaprop;
PointerRNA ptr = but->rnapoin;
float rgb[4];
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
if (prop) {
RNA_property_float_get_array(&ptr, prop, rgb);
ui_update_color_picker_buts_rgb(but->block, but->custom_data, rgb, (RNA_property_subtype(prop) == PROP_COLOR_GAMMA));
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
}
if (popup)
2012-03-30 01:51:25 +00:00
popup->menuretval = UI_RETURN_UPDATE;
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
}
static void ui_color_wheel_rna_cb(bContext *UNUSED(C), void *bt1, void *UNUSED(arg))
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
{
2012-03-30 01:51:25 +00:00
uiBut *but = (uiBut *)bt1;
uiPopupBlockHandle *popup = but->block->handle;
float rgb[3];
ColorPicker *cpicker = but->custom_data;
float *hsv = cpicker->color_data;
bool use_display_colorspace = ui_but_is_colorpicker_display_space(but);
ui_color_picker_to_rgb_v(hsv, rgb);
/* hsv is saved in display space so convert back */
if (use_display_colorspace) {
ui_block_cm_to_scene_linear_v3(but->block, rgb);
}
ui_update_color_picker_buts_rgb(but->block, cpicker, rgb, !use_display_colorspace);
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
if (popup)
2012-03-30 01:51:25 +00:00
popup->menuretval = UI_RETURN_UPDATE;
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
}
static void ui_colorpicker_hex_rna_cb(bContext *UNUSED(C), void *bt1, void *hexcl)
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
{
2012-03-30 01:51:25 +00:00
uiBut *but = (uiBut *)bt1;
uiPopupBlockHandle *popup = but->block->handle;
ColorPicker *cpicker = but->custom_data;
2012-03-30 01:51:25 +00:00
char *hexcol = (char *)hexcl;
float rgb[3];
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
2012-03-30 01:51:25 +00:00
hex_to_rgb(hexcol, rgb, rgb + 1, rgb + 2);
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
/* Hex code is assumed to be in sRGB space (coming from other applications, web, etc) */
Color Management, Stage 2: Switch color pipeline to use OpenColorIO Replace old color pipeline which was supporting linear/sRGB color spaces only with OpenColorIO-based pipeline. This introduces two configurable color spaces: - Input color space for images and movie clips. This space is used to convert images/movies from color space in which file is saved to Blender's linear space (for float images, byte images are not internally converted, only input space is stored for such images and used later). This setting could be found in image/clip data block settings. - Display color space which defines space in which particular display is working. This settings could be found in scene's Color Management panel. When render result is being displayed on the screen, apart from converting image to display space, some additional conversions could happen. This conversions are: - View, which defines tone curve applying before display transformation. These are different ways to view the image on the same display device. For example it could be used to emulate film view on sRGB display. - Exposure affects on image exposure before tone map is applied. - Gamma is post-display gamma correction, could be used to match particular display gamma. - RGB curves are user-defined curves which are applying before display transformation, could be used for different purposes. All this settings by default are only applying on render result and does not affect on other images. If some particular image needs to be affected by this transformation, "View as Render" setting of image data block should be set to truth. Movie clips are always affected by all display transformations. This commit also introduces configurable color space in which sequencer is working. This setting could be found in scene's Color Management panel and it should be used if such stuff as grading needs to be done in color space different from sRGB (i.e. when Film view on sRGB display is use, using VD16 space as sequencer's internal space would make grading working in space which is close to the space using for display). Some technical notes: - Image buffer's float buffer is now always in linear space, even if it was created from 16bit byte images. - Space of byte buffer is stored in image buffer's rect_colorspace property. - Profile of image buffer was removed since it's not longer meaningful. - OpenGL and GLSL is supposed to always work in sRGB space. It is possible to support other spaces, but it's quite large project which isn't so much important. - Legacy Color Management option disabled is emulated by using None display. It could have some regressions, but there's no clear way to avoid them. - If OpenColorIO is disabled on build time, it should make blender behaving in the same way as previous release with color management enabled. More details could be found at this page (more details would be added soon): http://wiki.blender.org/index.php/Dev:Ref/Release_Notes/2.64/Color_Management -- Thanks to Xavier Thomas, Lukas Toene for initial work on OpenColorIO integration and to Brecht van Lommel for some further development and code/ usecase review!
2012-09-15 10:05:07 +00:00
if (but->block->color_profile) {
/* so we need to linearise it for Blender */
ui_block_cm_to_scene_linear_v3(but->block, rgb);
}
ui_update_color_picker_buts_rgb(but->block, cpicker, rgb, false);
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
if (popup)
2012-03-30 01:51:25 +00:00
popup->menuretval = UI_RETURN_UPDATE;
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
}
static void ui_popup_close_cb(bContext *UNUSED(C), void *bt1, void *UNUSED(arg))
{
2012-03-30 01:51:25 +00:00
uiBut *but = (uiBut *)bt1;
uiPopupBlockHandle *popup = but->block->handle;
if (popup)
2012-03-30 01:51:25 +00:00
popup->menuretval = UI_RETURN_OK;
}
static void ui_colorpicker_hide_reveal(uiBlock *block, short colormode)
{
uiBut *bt;
/* tag buttons */
2012-03-30 01:51:25 +00:00
for (bt = block->buttons.first; bt; bt = bt->next) {
if ((bt->func == ui_colorpicker_rna_cb) && bt->type == UI_BTYPE_NUM_SLIDER && bt->rnaindex != 3) {
/* RGB sliders (color circle and alpha are always shown) */
if (colormode == 0) bt->flag &= ~UI_HIDDEN;
else bt->flag |= UI_HIDDEN;
}
else if (bt->func == ui_color_wheel_rna_cb) {
/* HSV sliders */
if (colormode == 1) bt->flag &= ~UI_HIDDEN;
else bt->flag |= UI_HIDDEN;
}
else if (bt->func == ui_colorpicker_hex_rna_cb || bt->type == UI_BTYPE_LABEL) {
/* hex input or gamma correction status label */
if (colormode == 2) bt->flag &= ~UI_HIDDEN;
else bt->flag |= UI_HIDDEN;
}
}
}
static void ui_colorpicker_create_mode_cb(bContext *UNUSED(C), void *bt1, void *UNUSED(arg))
{
2012-03-30 01:51:25 +00:00
uiBut *bt = bt1;
short colormode = ui_but_value_get(bt);
ui_colorpicker_hide_reveal(bt->block, colormode);
}
Holiday coding log :) Nice formatted version (pictures soon): http://wiki.blender.org/index.php/Dev:Ref/Release_Notes/2.66/Usability Short list of main changes: - Transparent region option (over main region), added code to blend in/out such panels. - Min size window now 640 x 480 - Fixed DPI for ui - lots of cleanup and changes everywhere. Icon image need correct size still, layer-in-use icon needs remake. - Macbook retina support, use command line --no-native-pixels to disable it - Timeline Marker label was drawing wrong - Trackpad and magic mouse: supports zoom (hold ctrl) - Fix for splash position: removed ghost function and made window size update after creation immediate - Fast undo buffer save now adds UI as well. Could be checked for regular file save even... Quit.blend and temp file saving use this now. - Dixed filename in window on reading quit.blend or temp saves, and they now add a warning in window title: "(Recovered)" - New Userpref option "Keep Session" - this always saves quit.blend, and loads on start. This allows keeping UI and data without actual saves, until you actually save. When you load startup.blend and quit, it recognises the quit.blend as a startup (no file name in header) - Added 3D view copy/paste buffers (selected objects). Shortcuts ctrl-c, ctrl-v (OSX, cmd-c, cmd-v). Coded partial file saving for it. Could be used for other purposes. Todo: use OS clipboards. - User preferences (themes, keymaps, user settings) now can be saved as a separate file. Old option is called "Save Startup File" the new one "Save User Settings". To visualise this difference, the 'save startup file' button has been removed from user preferences window. That option is available as CTRL+U and in File menu still. - OSX: fixed bug that stopped giving mouse events outside window. This also fixes "Continuous Grab" for OSX. (error since 2009)
2012-12-12 18:58:11 +00:00
#define PICKER_H (7.5f * U.widget_unit)
#define PICKER_W (7.5f * U.widget_unit)
#define PICKER_SPACE (0.3f * U.widget_unit)
#define PICKER_BAR (0.7f * U.widget_unit)
2012-03-30 01:51:25 +00:00
#define PICKER_TOTAL_W (PICKER_W + PICKER_SPACE + PICKER_BAR)
static void ui_colorpicker_circle(uiBlock *block, PointerRNA *ptr, PropertyRNA *prop, ColorPicker *cpicker)
{
uiBut *bt;
/* HS circle */
bt = uiDefButR_prop(block, UI_BTYPE_HSVCIRCLE, 0, "", 0, 0, PICKER_H, PICKER_W, ptr, prop, -1, 0.0, 0.0, 0.0, 0, TIP_("Color"));
UI_but_func_set(bt, ui_colorpicker_rna_cb, bt, NULL);
bt->custom_data = cpicker;
/* value */
if (U.color_picker_type == USER_CP_CIRCLE_HSL) {
bt = uiDefButR_prop(block, UI_BTYPE_HSVCUBE, 0, "", PICKER_W + PICKER_SPACE, 0, PICKER_BAR, PICKER_H, ptr, prop, -1, 0.0, 0.0, UI_GRAD_L_ALT, 0, "Lightness");
UI_but_func_set(bt, ui_colorpicker_rna_cb, bt, NULL);
}
else {
bt = uiDefButR_prop(block, UI_BTYPE_HSVCUBE, 0, "", PICKER_W + PICKER_SPACE, 0, PICKER_BAR, PICKER_H, ptr, prop, -1, 0.0, 0.0, UI_GRAD_V_ALT, 0, TIP_("Value"));
UI_but_func_set(bt, ui_colorpicker_rna_cb, bt, NULL);
}
bt->custom_data = cpicker;
}
static void ui_colorpicker_square(uiBlock *block, PointerRNA *ptr, PropertyRNA *prop, int type, ColorPicker *cpicker)
{
uiBut *bt;
int bartype = type + 3;
/* HS square */
bt = uiDefButR_prop(block, UI_BTYPE_HSVCUBE, 0, "", 0, PICKER_BAR + PICKER_SPACE, PICKER_TOTAL_W, PICKER_H, ptr, prop, -1, 0.0, 0.0, type, 0, TIP_("Color"));
UI_but_func_set(bt, ui_colorpicker_rna_cb, bt, NULL);
bt->custom_data = cpicker;
/* value */
bt = uiDefButR_prop(block, UI_BTYPE_HSVCUBE, 0, "", 0, 0, PICKER_TOTAL_W, PICKER_BAR, ptr, prop, -1, 0.0, 0.0, bartype, 0, TIP_("Value"));
UI_but_func_set(bt, ui_colorpicker_rna_cb, bt, NULL);
bt->custom_data = cpicker;
}
/* a HS circle, V slider, rgb/hsv/hex sliders */
static void ui_block_colorpicker(uiBlock *block, float rgba[4], PointerRNA *ptr, PropertyRNA *prop, bool show_picker)
{
2012-03-30 01:51:25 +00:00
static short colormode = 0; /* temp? 0=rgb, 1=hsv, 2=hex */
uiBut *bt;
int width, butwidth;
Changes to Color Management After testing and feedback, I've decided to slightly modify the way color management works internally. While the previous method worked well for rendering, was a smaller transition and had some advantages over this new method, it was a bit more ambiguous, and was making things difficult for other areas such as compositing. This implementation now considers all color data (with only a couple of exceptions such as brush colors) to be stored in linear RGB color space, rather than sRGB as previously. This brings it in line with Nuke, which also operates this way, quite successfully. Color swatches, pickers, color ramp display are now gamma corrected to display gamma so you can see what you're doing, but the numbers themselves are considered linear. This makes understanding blending modes more clear (a 0.5 value on overlay will not change the result now) as well as making color swatches act more predictably in the compositor, however bringing over color values from applications like photoshop or gimp, that operate in a gamma space, will give identical results. This commit will convert over existing files saved by earlier 2.5 versions to work generally the same, though there may be some slight differences with things like textures. Now that we're set on changing other areas of shading, this won't be too disruptive overall. I've made a diagram explaining the pipeline here: http://mke3.net/blender/devel/2.5/25_linear_workflow_pipeline.png and some docs here: http://www.blender.org/development/release-logs/blender-250/color-management/
2009-12-02 07:56:34 +00:00
static char tip[50];
static char hexcol[128];
float rgb_gamma[3];
2014-04-13 11:26:31 +10:00
unsigned char rgb_gamma_uchar[3];
float softmin, softmax, hardmin, hardmax, step, precision;
Holiday coding log :) Nice formatted version (pictures soon): http://wiki.blender.org/index.php/Dev:Ref/Release_Notes/2.66/Usability Short list of main changes: - Transparent region option (over main region), added code to blend in/out such panels. - Min size window now 640 x 480 - Fixed DPI for ui - lots of cleanup and changes everywhere. Icon image need correct size still, layer-in-use icon needs remake. - Macbook retina support, use command line --no-native-pixels to disable it - Timeline Marker label was drawing wrong - Trackpad and magic mouse: supports zoom (hold ctrl) - Fix for splash position: removed ghost function and made window size update after creation immediate - Fast undo buffer save now adds UI as well. Could be checked for regular file save even... Quit.blend and temp file saving use this now. - Dixed filename in window on reading quit.blend or temp saves, and they now add a warning in window title: "(Recovered)" - New Userpref option "Keep Session" - this always saves quit.blend, and loads on start. This allows keeping UI and data without actual saves, until you actually save. When you load startup.blend and quit, it recognises the quit.blend as a startup (no file name in header) - Added 3D view copy/paste buffers (selected objects). Shortcuts ctrl-c, ctrl-v (OSX, cmd-c, cmd-v). Coded partial file saving for it. Could be used for other purposes. Todo: use OS clipboards. - User preferences (themes, keymaps, user settings) now can be saved as a separate file. Old option is called "Save Startup File" the new one "Save User Settings". To visualise this difference, the 'save startup file' button has been removed from user preferences window. That option is available as CTRL+U and in File menu still. - OSX: fixed bug that stopped giving mouse events outside window. This also fixes "Continuous Grab" for OSX. (error since 2009)
2012-12-12 18:58:11 +00:00
int yco;
ColorPicker *cpicker = ui_block_colorpicker_create(block);
float *hsv = cpicker->color_data;
2012-03-30 01:51:25 +00:00
width = PICKER_TOTAL_W;
Holiday coding log :) Nice formatted version (pictures soon): http://wiki.blender.org/index.php/Dev:Ref/Release_Notes/2.66/Usability Short list of main changes: - Transparent region option (over main region), added code to blend in/out such panels. - Min size window now 640 x 480 - Fixed DPI for ui - lots of cleanup and changes everywhere. Icon image need correct size still, layer-in-use icon needs remake. - Macbook retina support, use command line --no-native-pixels to disable it - Timeline Marker label was drawing wrong - Trackpad and magic mouse: supports zoom (hold ctrl) - Fix for splash position: removed ghost function and made window size update after creation immediate - Fast undo buffer save now adds UI as well. Could be checked for regular file save even... Quit.blend and temp file saving use this now. - Dixed filename in window on reading quit.blend or temp saves, and they now add a warning in window title: "(Recovered)" - New Userpref option "Keep Session" - this always saves quit.blend, and loads on start. This allows keeping UI and data without actual saves, until you actually save. When you load startup.blend and quit, it recognises the quit.blend as a startup (no file name in header) - Added 3D view copy/paste buffers (selected objects). Shortcuts ctrl-c, ctrl-v (OSX, cmd-c, cmd-v). Coded partial file saving for it. Could be used for other purposes. Todo: use OS clipboards. - User preferences (themes, keymaps, user settings) now can be saved as a separate file. Old option is called "Save Startup File" the new one "Save User Settings". To visualise this difference, the 'save startup file' button has been removed from user preferences window. That option is available as CTRL+U and in File menu still. - OSX: fixed bug that stopped giving mouse events outside window. This also fixes "Continuous Grab" for OSX. (error since 2009)
2012-12-12 18:58:11 +00:00
butwidth = width - 1.5f * UI_UNIT_X;
/* existence of profile means storage is in linear color space, with display correction */
/* XXX That tip message is not use anywhere! */
Color Management, Stage 2: Switch color pipeline to use OpenColorIO Replace old color pipeline which was supporting linear/sRGB color spaces only with OpenColorIO-based pipeline. This introduces two configurable color spaces: - Input color space for images and movie clips. This space is used to convert images/movies from color space in which file is saved to Blender's linear space (for float images, byte images are not internally converted, only input space is stored for such images and used later). This setting could be found in image/clip data block settings. - Display color space which defines space in which particular display is working. This settings could be found in scene's Color Management panel. When render result is being displayed on the screen, apart from converting image to display space, some additional conversions could happen. This conversions are: - View, which defines tone curve applying before display transformation. These are different ways to view the image on the same display device. For example it could be used to emulate film view on sRGB display. - Exposure affects on image exposure before tone map is applied. - Gamma is post-display gamma correction, could be used to match particular display gamma. - RGB curves are user-defined curves which are applying before display transformation, could be used for different purposes. All this settings by default are only applying on render result and does not affect on other images. If some particular image needs to be affected by this transformation, "View as Render" setting of image data block should be set to truth. Movie clips are always affected by all display transformations. This commit also introduces configurable color space in which sequencer is working. This setting could be found in scene's Color Management panel and it should be used if such stuff as grading needs to be done in color space different from sRGB (i.e. when Film view on sRGB display is use, using VD16 space as sequencer's internal space would make grading working in space which is close to the space using for display). Some technical notes: - Image buffer's float buffer is now always in linear space, even if it was created from 16bit byte images. - Space of byte buffer is stored in image buffer's rect_colorspace property. - Profile of image buffer was removed since it's not longer meaningful. - OpenGL and GLSL is supposed to always work in sRGB space. It is possible to support other spaces, but it's quite large project which isn't so much important. - Legacy Color Management option disabled is emulated by using None display. It could have some regressions, but there's no clear way to avoid them. - If OpenColorIO is disabled on build time, it should make blender behaving in the same way as previous release with color management enabled. More details could be found at this page (more details would be added soon): http://wiki.blender.org/index.php/Dev:Ref/Release_Notes/2.64/Color_Management -- Thanks to Xavier Thomas, Lukas Toene for initial work on OpenColorIO integration and to Brecht van Lommel for some further development and code/ usecase review!
2012-09-15 10:05:07 +00:00
if (!block->color_profile) {
BLI_strncpy(tip, N_("Value in Display Color Space"), sizeof(tip));
copy_v3_v3(rgb_gamma, rgba);
}
else {
BLI_strncpy(tip, N_("Value in Linear RGB Color Space"), sizeof(tip));
Color Management, Stage 2: Switch color pipeline to use OpenColorIO Replace old color pipeline which was supporting linear/sRGB color spaces only with OpenColorIO-based pipeline. This introduces two configurable color spaces: - Input color space for images and movie clips. This space is used to convert images/movies from color space in which file is saved to Blender's linear space (for float images, byte images are not internally converted, only input space is stored for such images and used later). This setting could be found in image/clip data block settings. - Display color space which defines space in which particular display is working. This settings could be found in scene's Color Management panel. When render result is being displayed on the screen, apart from converting image to display space, some additional conversions could happen. This conversions are: - View, which defines tone curve applying before display transformation. These are different ways to view the image on the same display device. For example it could be used to emulate film view on sRGB display. - Exposure affects on image exposure before tone map is applied. - Gamma is post-display gamma correction, could be used to match particular display gamma. - RGB curves are user-defined curves which are applying before display transformation, could be used for different purposes. All this settings by default are only applying on render result and does not affect on other images. If some particular image needs to be affected by this transformation, "View as Render" setting of image data block should be set to truth. Movie clips are always affected by all display transformations. This commit also introduces configurable color space in which sequencer is working. This setting could be found in scene's Color Management panel and it should be used if such stuff as grading needs to be done in color space different from sRGB (i.e. when Film view on sRGB display is use, using VD16 space as sequencer's internal space would make grading working in space which is close to the space using for display). Some technical notes: - Image buffer's float buffer is now always in linear space, even if it was created from 16bit byte images. - Space of byte buffer is stored in image buffer's rect_colorspace property. - Profile of image buffer was removed since it's not longer meaningful. - OpenGL and GLSL is supposed to always work in sRGB space. It is possible to support other spaces, but it's quite large project which isn't so much important. - Legacy Color Management option disabled is emulated by using None display. It could have some regressions, but there's no clear way to avoid them. - If OpenColorIO is disabled on build time, it should make blender behaving in the same way as previous release with color management enabled. More details could be found at this page (more details would be added soon): http://wiki.blender.org/index.php/Dev:Ref/Release_Notes/2.64/Color_Management -- Thanks to Xavier Thomas, Lukas Toene for initial work on OpenColorIO integration and to Brecht van Lommel for some further development and code/ usecase review!
2012-09-15 10:05:07 +00:00
/* make a display version, for Hex code */
copy_v3_v3(rgb_gamma, rgba);
ui_block_cm_to_display_space_v3(block, rgb_gamma);
}
Changes to Color Management After testing and feedback, I've decided to slightly modify the way color management works internally. While the previous method worked well for rendering, was a smaller transition and had some advantages over this new method, it was a bit more ambiguous, and was making things difficult for other areas such as compositing. This implementation now considers all color data (with only a couple of exceptions such as brush colors) to be stored in linear RGB color space, rather than sRGB as previously. This brings it in line with Nuke, which also operates this way, quite successfully. Color swatches, pickers, color ramp display are now gamma corrected to display gamma so you can see what you're doing, but the numbers themselves are considered linear. This makes understanding blending modes more clear (a 0.5 value on overlay will not change the result now) as well as making color swatches act more predictably in the compositor, however bringing over color values from applications like photoshop or gimp, that operate in a gamma space, will give identical results. This commit will convert over existing files saved by earlier 2.5 versions to work generally the same, though there may be some slight differences with things like textures. Now that we're set on changing other areas of shading, this won't be too disruptive overall. I've made a diagram explaining the pipeline here: http://mke3.net/blender/devel/2.5/25_linear_workflow_pipeline.png and some docs here: http://www.blender.org/development/release-logs/blender-250/color-management/
2009-12-02 07:56:34 +00:00
/* sneaky way to check for alpha */
rgba[3] = FLT_MAX;
RNA_property_float_ui_range(ptr, prop, &softmin, &softmax, &step, &precision);
RNA_property_float_range(ptr, prop, &hardmin, &hardmax);
RNA_property_float_get_array(ptr, prop, rgba);
switch (U.color_picker_type) {
case USER_CP_SQUARE_SV:
ui_colorpicker_square(block, ptr, prop, UI_GRAD_SV, cpicker);
break;
case USER_CP_SQUARE_HS:
ui_colorpicker_square(block, ptr, prop, UI_GRAD_HS, cpicker);
break;
case USER_CP_SQUARE_HV:
ui_colorpicker_square(block, ptr, prop, UI_GRAD_HV, cpicker);
break;
/* user default */
case USER_CP_CIRCLE_HSV:
case USER_CP_CIRCLE_HSL:
default:
ui_colorpicker_circle(block, ptr, prop, cpicker);
break;
}
/* mode */
Holiday coding log :) Nice formatted version (pictures soon): http://wiki.blender.org/index.php/Dev:Ref/Release_Notes/2.66/Usability Short list of main changes: - Transparent region option (over main region), added code to blend in/out such panels. - Min size window now 640 x 480 - Fixed DPI for ui - lots of cleanup and changes everywhere. Icon image need correct size still, layer-in-use icon needs remake. - Macbook retina support, use command line --no-native-pixels to disable it - Timeline Marker label was drawing wrong - Trackpad and magic mouse: supports zoom (hold ctrl) - Fix for splash position: removed ghost function and made window size update after creation immediate - Fast undo buffer save now adds UI as well. Could be checked for regular file save even... Quit.blend and temp file saving use this now. - Dixed filename in window on reading quit.blend or temp saves, and they now add a warning in window title: "(Recovered)" - New Userpref option "Keep Session" - this always saves quit.blend, and loads on start. This allows keeping UI and data without actual saves, until you actually save. When you load startup.blend and quit, it recognises the quit.blend as a startup (no file name in header) - Added 3D view copy/paste buffers (selected objects). Shortcuts ctrl-c, ctrl-v (OSX, cmd-c, cmd-v). Coded partial file saving for it. Could be used for other purposes. Todo: use OS clipboards. - User preferences (themes, keymaps, user settings) now can be saved as a separate file. Old option is called "Save Startup File" the new one "Save User Settings". To visualise this difference, the 'save startup file' button has been removed from user preferences window. That option is available as CTRL+U and in File menu still. - OSX: fixed bug that stopped giving mouse events outside window. This also fixes "Continuous Grab" for OSX. (error since 2009)
2012-12-12 18:58:11 +00:00
yco = -1.5f * UI_UNIT_Y;
UI_block_align_begin(block);
bt = uiDefButS(block, UI_BTYPE_ROW, 0, IFACE_("RGB"), 0, yco, width / 3, UI_UNIT_Y, &colormode, 0.0, 0.0, 0, 0, "");
UI_but_func_set(bt, ui_colorpicker_create_mode_cb, bt, NULL);
bt->custom_data = cpicker;
if (U.color_picker_type == USER_CP_CIRCLE_HSL)
bt = uiDefButS(block, UI_BTYPE_ROW, 0, IFACE_("HSL"), width / 3, yco, width / 3, UI_UNIT_Y, &colormode, 0.0, 1.0, 0, 0, "");
else
bt = uiDefButS(block, UI_BTYPE_ROW, 0, IFACE_("HSV"), width / 3, yco, width / 3, UI_UNIT_Y, &colormode, 0.0, 1.0, 0, 0, "");
UI_but_func_set(bt, ui_colorpicker_create_mode_cb, bt, NULL);
bt->custom_data = cpicker;
bt = uiDefButS(block, UI_BTYPE_ROW, 0, IFACE_("Hex"), 2 * width / 3, yco, width / 3, UI_UNIT_Y, &colormode, 0.0, 2.0, 0, 0, "");
UI_but_func_set(bt, ui_colorpicker_create_mode_cb, bt, NULL);
bt->custom_data = cpicker;
UI_block_align_end(block);
Holiday coding log :) Nice formatted version (pictures soon): http://wiki.blender.org/index.php/Dev:Ref/Release_Notes/2.66/Usability Short list of main changes: - Transparent region option (over main region), added code to blend in/out such panels. - Min size window now 640 x 480 - Fixed DPI for ui - lots of cleanup and changes everywhere. Icon image need correct size still, layer-in-use icon needs remake. - Macbook retina support, use command line --no-native-pixels to disable it - Timeline Marker label was drawing wrong - Trackpad and magic mouse: supports zoom (hold ctrl) - Fix for splash position: removed ghost function and made window size update after creation immediate - Fast undo buffer save now adds UI as well. Could be checked for regular file save even... Quit.blend and temp file saving use this now. - Dixed filename in window on reading quit.blend or temp saves, and they now add a warning in window title: "(Recovered)" - New Userpref option "Keep Session" - this always saves quit.blend, and loads on start. This allows keeping UI and data without actual saves, until you actually save. When you load startup.blend and quit, it recognises the quit.blend as a startup (no file name in header) - Added 3D view copy/paste buffers (selected objects). Shortcuts ctrl-c, ctrl-v (OSX, cmd-c, cmd-v). Coded partial file saving for it. Could be used for other purposes. Todo: use OS clipboards. - User preferences (themes, keymaps, user settings) now can be saved as a separate file. Old option is called "Save Startup File" the new one "Save User Settings". To visualise this difference, the 'save startup file' button has been removed from user preferences window. That option is available as CTRL+U and in File menu still. - OSX: fixed bug that stopped giving mouse events outside window. This also fixes "Continuous Grab" for OSX. (error since 2009)
2012-12-12 18:58:11 +00:00
yco = -3.0f * UI_UNIT_Y;
if (show_picker) {
bt = uiDefIconButO(block, UI_BTYPE_BUT, "UI_OT_eyedropper_color", WM_OP_INVOKE_DEFAULT, ICON_EYEDROPPER, butwidth + 10, yco, UI_UNIT_X, UI_UNIT_Y, NULL);
UI_but_func_set(bt, ui_popup_close_cb, bt, NULL);
bt->custom_data = cpicker;
}
/* RGB values */
UI_block_align_begin(block);
bt = uiDefButR_prop(block, UI_BTYPE_NUM_SLIDER, 0, IFACE_("R:"), 0, yco, butwidth, UI_UNIT_Y, ptr, prop, 0, 0.0, 0.0, 0, 3, TIP_("Red"));
UI_but_func_set(bt, ui_colorpicker_rna_cb, bt, NULL);
bt->custom_data = cpicker;
bt = uiDefButR_prop(block, UI_BTYPE_NUM_SLIDER, 0, IFACE_("G:"), 0, yco -= UI_UNIT_Y, butwidth, UI_UNIT_Y, ptr, prop, 1, 0.0, 0.0, 0, 3, TIP_("Green"));
UI_but_func_set(bt, ui_colorpicker_rna_cb, bt, NULL);
bt->custom_data = cpicker;
bt = uiDefButR_prop(block, UI_BTYPE_NUM_SLIDER, 0, IFACE_("B:"), 0, yco -= UI_UNIT_Y, butwidth, UI_UNIT_Y, ptr, prop, 2, 0.0, 0.0, 0, 3, TIP_("Blue"));
UI_but_func_set(bt, ui_colorpicker_rna_cb, bt, NULL);
bt->custom_data = cpicker;
/* could use uiItemFullR(col, ptr, prop, -1, 0, UI_ITEM_R_EXPAND|UI_ITEM_R_SLIDER, "", ICON_NONE);
* but need to use UI_but_func_set for updating other fake buttons */
/* HSV values */
Holiday coding log :) Nice formatted version (pictures soon): http://wiki.blender.org/index.php/Dev:Ref/Release_Notes/2.66/Usability Short list of main changes: - Transparent region option (over main region), added code to blend in/out such panels. - Min size window now 640 x 480 - Fixed DPI for ui - lots of cleanup and changes everywhere. Icon image need correct size still, layer-in-use icon needs remake. - Macbook retina support, use command line --no-native-pixels to disable it - Timeline Marker label was drawing wrong - Trackpad and magic mouse: supports zoom (hold ctrl) - Fix for splash position: removed ghost function and made window size update after creation immediate - Fast undo buffer save now adds UI as well. Could be checked for regular file save even... Quit.blend and temp file saving use this now. - Dixed filename in window on reading quit.blend or temp saves, and they now add a warning in window title: "(Recovered)" - New Userpref option "Keep Session" - this always saves quit.blend, and loads on start. This allows keeping UI and data without actual saves, until you actually save. When you load startup.blend and quit, it recognises the quit.blend as a startup (no file name in header) - Added 3D view copy/paste buffers (selected objects). Shortcuts ctrl-c, ctrl-v (OSX, cmd-c, cmd-v). Coded partial file saving for it. Could be used for other purposes. Todo: use OS clipboards. - User preferences (themes, keymaps, user settings) now can be saved as a separate file. Old option is called "Save Startup File" the new one "Save User Settings". To visualise this difference, the 'save startup file' button has been removed from user preferences window. That option is available as CTRL+U and in File menu still. - OSX: fixed bug that stopped giving mouse events outside window. This also fixes "Continuous Grab" for OSX. (error since 2009)
2012-12-12 18:58:11 +00:00
yco = -3.0f * UI_UNIT_Y;
UI_block_align_begin(block);
bt = uiDefButF(block, UI_BTYPE_NUM_SLIDER, 0, IFACE_("H:"), 0, yco, butwidth, UI_UNIT_Y, hsv, 0.0, 1.0, 10, 3, TIP_("Hue"));
UI_but_func_set(bt, ui_color_wheel_rna_cb, bt, hsv);
bt->custom_data = cpicker;
bt = uiDefButF(block, UI_BTYPE_NUM_SLIDER, 0, IFACE_("S:"), 0, yco -= UI_UNIT_Y, butwidth, UI_UNIT_Y, hsv + 1, 0.0, 1.0, 10, 3, TIP_("Saturation"));
UI_but_func_set(bt, ui_color_wheel_rna_cb, bt, hsv);
bt->custom_data = cpicker;
if (U.color_picker_type == USER_CP_CIRCLE_HSL)
bt = uiDefButF(block, UI_BTYPE_NUM_SLIDER, 0, IFACE_("L:"), 0, yco -= UI_UNIT_Y, butwidth, UI_UNIT_Y, hsv + 2, 0.0, 1.0, 10, 3, TIP_("Lightness"));
else
bt = uiDefButF(block, UI_BTYPE_NUM_SLIDER, 0, IFACE_("V:"), 0, yco -= UI_UNIT_Y, butwidth, UI_UNIT_Y, hsv + 2, 0.0, softmax, 10, 3, TIP_("Value"));
bt->hardmax = hardmax; /* not common but rgb may be over 1.0 */
UI_but_func_set(bt, ui_color_wheel_rna_cb, bt, hsv);
bt->custom_data = cpicker;
UI_block_align_end(block);
if (rgba[3] != FLT_MAX) {
bt = uiDefButR_prop(block, UI_BTYPE_NUM_SLIDER, 0, IFACE_("A: "), 0, yco -= UI_UNIT_Y, butwidth, UI_UNIT_Y, ptr, prop, 3, 0.0, 0.0, 0, 3, TIP_("Alpha"));
UI_but_func_set(bt, ui_colorpicker_rna_cb, bt, NULL);
bt->custom_data = cpicker;
}
else {
rgba[3] = 1.0f;
}
2014-04-13 11:26:31 +10:00
rgb_float_to_uchar(rgb_gamma_uchar, rgb_gamma);
BLI_snprintf(hexcol, sizeof(hexcol), "%02X%02X%02X", UNPACK3_EX((unsigned int), rgb_gamma_uchar, ));
Holiday coding log :) Nice formatted version (pictures soon): http://wiki.blender.org/index.php/Dev:Ref/Release_Notes/2.66/Usability Short list of main changes: - Transparent region option (over main region), added code to blend in/out such panels. - Min size window now 640 x 480 - Fixed DPI for ui - lots of cleanup and changes everywhere. Icon image need correct size still, layer-in-use icon needs remake. - Macbook retina support, use command line --no-native-pixels to disable it - Timeline Marker label was drawing wrong - Trackpad and magic mouse: supports zoom (hold ctrl) - Fix for splash position: removed ghost function and made window size update after creation immediate - Fast undo buffer save now adds UI as well. Could be checked for regular file save even... Quit.blend and temp file saving use this now. - Dixed filename in window on reading quit.blend or temp saves, and they now add a warning in window title: "(Recovered)" - New Userpref option "Keep Session" - this always saves quit.blend, and loads on start. This allows keeping UI and data without actual saves, until you actually save. When you load startup.blend and quit, it recognises the quit.blend as a startup (no file name in header) - Added 3D view copy/paste buffers (selected objects). Shortcuts ctrl-c, ctrl-v (OSX, cmd-c, cmd-v). Coded partial file saving for it. Could be used for other purposes. Todo: use OS clipboards. - User preferences (themes, keymaps, user settings) now can be saved as a separate file. Old option is called "Save Startup File" the new one "Save User Settings". To visualise this difference, the 'save startup file' button has been removed from user preferences window. That option is available as CTRL+U and in File menu still. - OSX: fixed bug that stopped giving mouse events outside window. This also fixes "Continuous Grab" for OSX. (error since 2009)
2012-12-12 18:58:11 +00:00
yco = -3.0f * UI_UNIT_Y;
bt = uiDefBut(block, UI_BTYPE_TEXT, 0, IFACE_("Hex: "), 0, yco, butwidth, UI_UNIT_Y, hexcol, 0, 8, 0, 0, TIP_("Hex triplet for color (#RRGGBB)"));
UI_but_func_set(bt, ui_colorpicker_hex_rna_cb, bt, hexcol);
bt->custom_data = cpicker;
uiDefBut(block, UI_BTYPE_LABEL, 0, IFACE_("(Gamma Corrected)"), 0, yco - UI_UNIT_Y, butwidth, UI_UNIT_Y, NULL, 0.0, 0.0, 0, 0, "");
ui_rgb_to_color_picker_v(rgb_gamma, hsv);
ui_colorpicker_hide_reveal(block, colormode);
}
static int ui_colorpicker_small_wheel_cb(const bContext *UNUSED(C), uiBlock *block, const wmEvent *event)
{
2012-03-30 01:51:25 +00:00
float add = 0.0f;
2012-03-30 01:51:25 +00:00
if (event->type == WHEELUPMOUSE)
add = 0.05f;
else if (event->type == WHEELDOWNMOUSE)
add = -0.05f;
2012-03-30 01:51:25 +00:00
if (add != 0.0f) {
uiBut *but;
2012-03-30 01:51:25 +00:00
for (but = block->buttons.first; but; but = but->next) {
if (but->type == UI_BTYPE_HSVCUBE && but->active == NULL) {
2012-03-30 01:51:25 +00:00
uiPopupBlockHandle *popup = block->handle;
float rgb[3];
ColorPicker *cpicker = but->custom_data;
float *hsv = cpicker->color_data;
bool use_display_colorspace = ui_but_is_colorpicker_display_space(but);
ui_but_v3_get(but, rgb);
if (use_display_colorspace)
ui_block_cm_to_display_space_v3(block, rgb);
ui_rgb_to_color_picker_compat_v(rgb, hsv);
2012-03-30 01:51:25 +00:00
hsv[2] = CLAMPIS(hsv[2] + add, 0.0f, 1.0f);
ui_color_picker_to_rgb_v(hsv, rgb);
if (use_display_colorspace)
ui_block_cm_to_scene_linear_v3(block, rgb);
ui_but_v3_set(but, rgb);
ui_update_color_picker_buts_rgb(block, cpicker, rgb, !use_display_colorspace);
if (popup)
2012-03-30 01:51:25 +00:00
popup->menuretval = UI_RETURN_UPDATE;
return 1;
}
}
}
return 0;
}
uiBlock *ui_block_func_COLOR(bContext *C, uiPopupBlockHandle *handle, void *arg_but)
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
{
2012-03-30 01:51:25 +00:00
uiBut *but = arg_but;
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
uiBlock *block;
bool show_picker = true;
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
block = UI_block_begin(C, handle->region, __func__, UI_EMBOSS);
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
if (RNA_property_subtype(but->rnaprop) == PROP_COLOR_GAMMA) {
block->color_profile = false;
Changes to Color Management After testing and feedback, I've decided to slightly modify the way color management works internally. While the previous method worked well for rendering, was a smaller transition and had some advantages over this new method, it was a bit more ambiguous, and was making things difficult for other areas such as compositing. This implementation now considers all color data (with only a couple of exceptions such as brush colors) to be stored in linear RGB color space, rather than sRGB as previously. This brings it in line with Nuke, which also operates this way, quite successfully. Color swatches, pickers, color ramp display are now gamma corrected to display gamma so you can see what you're doing, but the numbers themselves are considered linear. This makes understanding blending modes more clear (a 0.5 value on overlay will not change the result now) as well as making color swatches act more predictably in the compositor, however bringing over color values from applications like photoshop or gimp, that operate in a gamma space, will give identical results. This commit will convert over existing files saved by earlier 2.5 versions to work generally the same, though there may be some slight differences with things like textures. Now that we're set on changing other areas of shading, this won't be too disruptive overall. I've made a diagram explaining the pipeline here: http://mke3.net/blender/devel/2.5/25_linear_workflow_pipeline.png and some docs here: http://www.blender.org/development/release-logs/blender-250/color-management/
2009-12-02 07:56:34 +00:00
}
if (but->block) {
/* if color block is invoked from a popup we wouldn't be able to set color properly
* this is because color picker will close popups first and then will try to figure
* out active button RNA, and of course it'll fail
*/
show_picker = (but->block->flag & UI_BLOCK_POPUP) == 0;
}
Changes to Color Management After testing and feedback, I've decided to slightly modify the way color management works internally. While the previous method worked well for rendering, was a smaller transition and had some advantages over this new method, it was a bit more ambiguous, and was making things difficult for other areas such as compositing. This implementation now considers all color data (with only a couple of exceptions such as brush colors) to be stored in linear RGB color space, rather than sRGB as previously. This brings it in line with Nuke, which also operates this way, quite successfully. Color swatches, pickers, color ramp display are now gamma corrected to display gamma so you can see what you're doing, but the numbers themselves are considered linear. This makes understanding blending modes more clear (a 0.5 value on overlay will not change the result now) as well as making color swatches act more predictably in the compositor, however bringing over color values from applications like photoshop or gimp, that operate in a gamma space, will give identical results. This commit will convert over existing files saved by earlier 2.5 versions to work generally the same, though there may be some slight differences with things like textures. Now that we're set on changing other areas of shading, this won't be too disruptive overall. I've made a diagram explaining the pipeline here: http://mke3.net/blender/devel/2.5/25_linear_workflow_pipeline.png and some docs here: http://www.blender.org/development/release-logs/blender-250/color-management/
2009-12-02 07:56:34 +00:00
copy_v3_v3(handle->retvec, but->editvec);
ui_block_colorpicker(block, handle->retvec, &but->rnapoin, but->rnaprop, show_picker);
2014-11-15 14:11:51 +01:00
block->flag = UI_BLOCK_LOOP | UI_BLOCK_KEEP_OPEN | UI_BLOCK_OUT_1 | UI_BLOCK_MOVEMOUSE_QUIT;
UI_block_bounds_set_normal(block, 0.5 * UI_UNIT_X);
block->block_event_func = ui_colorpicker_small_wheel_cb;
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
/* and lets go */
block->direction = UI_DIR_UP;
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
return block;
}
/************************ Popup Menu Memory ****************************/
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
static unsigned int ui_popup_string_hash(const char *str)
{
/* sometimes button contains hotkey, sometimes not, strip for proper compare */
int hash;
const char *delimit = strrchr(str, UI_SEP_CHAR);
if (delimit) {
hash = BLI_ghashutil_strhash_n(str, delimit - str);
}
else {
hash = BLI_ghashutil_strhash(str);
}
return hash;
}
static unsigned int ui_popup_menu_hash(const char *str)
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
{
return BLI_ghashutil_strhash(str);
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
}
/* but == NULL read, otherwise set */
static uiBut *ui_popup_menu_memory__internal(uiBlock *block, uiBut *but)
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
{
static unsigned int mem[256];
2014-02-13 10:13:33 +11:00
static bool first = true;
const unsigned int hash = block->puphash;
const unsigned int hash_mod = hash & 255;
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
if (first) {
/* init */
memset(mem, -1, sizeof(mem));
2012-03-30 01:51:25 +00:00
first = 0;
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
}
if (but) {
/* set */
mem[hash_mod] = ui_popup_string_hash(but->str);
return NULL;
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
}
else {
/* get */
2012-03-30 01:51:25 +00:00
for (but = block->buttons.first; but; but = but->next)
if (ui_popup_string_hash(but->str) == mem[hash_mod])
return but;
return NULL;
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
}
}
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
uiBut *ui_popup_menu_memory_get(uiBlock *block)
{
return ui_popup_menu_memory__internal(block, NULL);
}
void ui_popup_menu_memory_set(uiBlock *block, uiBut *but)
{
ui_popup_menu_memory__internal(block, but);
}
/**
* Translate any popup regions (so we can drag them).
*/
void ui_popup_translate(bContext *C, ARegion *ar, const int mdiff[2])
{
uiBlock *block;
BLI_rcti_translate(&ar->winrct, UNPACK2(mdiff));
ED_region_update_rect(C, ar);
ED_region_tag_redraw(ar);
/* update blocks */
for (block = ar->uiblocks.first; block; block = block->next) {
uiSafetyRct *saferct;
for (saferct = block->saferct.first; saferct; saferct = saferct->next) {
BLI_rctf_translate(&saferct->parent, UNPACK2(mdiff));
BLI_rctf_translate(&saferct->safety, UNPACK2(mdiff));
}
}
}
/******************** Popup Menu with callback or string **********************/
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
struct uiPopupMenu {
uiBlock *block;
uiLayout *layout;
uiBut *but;
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
int mx, my;
bool popup, slideout;
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
uiMenuCreateFunc menu_func;
void *menu_arg;
};
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
struct uiPieMenu {
uiBlock *block_radial; /* radial block of the pie menu (more could be added later) */
uiLayout *layout;
int mx, my;
};
static uiBlock *ui_block_func_POPUP(bContext *C, uiPopupBlockHandle *handle, void *arg_pup)
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
{
uiBlock *block;
uiBut *bt;
2012-03-30 01:51:25 +00:00
uiPopupMenu *pup = arg_pup;
int offset[2], minwidth, width, height;
char direction;
bool flip;
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
if (pup->menu_func) {
2012-03-30 01:51:25 +00:00
pup->block->handle = handle;
pup->menu_func(C, pup->layout, pup->menu_arg);
2012-03-30 01:51:25 +00:00
pup->block->handle = NULL;
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
}
if (pup->but) {
/* minimum width to enforece */
minwidth = BLI_rctf_size_x(&pup->but->rect);
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
/* settings (typically rna-enum-popups) show above the button,
* menu's like file-menu, show below */
if (pup->block->direction != 0) {
/* allow overriding the direction from menu_func */
direction = pup->block->direction;
}
else if ((pup->but->type == UI_BTYPE_PULLDOWN) ||
(UI_but_menutype_get(pup->but) != NULL))
{
direction = UI_DIR_DOWN;
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
}
else {
direction = UI_DIR_UP;
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
}
}
else {
2012-03-30 01:51:25 +00:00
minwidth = 50;
direction = UI_DIR_DOWN;
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
}
flip = (direction == UI_DIR_DOWN);
2012-03-30 01:51:25 +00:00
block = pup->block;
/* in some cases we create the block before the region,
* so we set it delayed here if necessary */
if (BLI_findindex(&handle->region->uiblocks, block) == -1)
UI_block_region_set(block, handle->region);
2012-03-30 01:51:25 +00:00
block->direction = direction;
UI_block_layout_resolve(block, &width, &height);
UI_block_flag_enable(block, UI_BLOCK_MOVEMOUSE_QUIT);
if (pup->popup) {
uiBut *but_activate = NULL;
2014-11-15 14:11:51 +01:00
UI_block_flag_enable(block, UI_BLOCK_LOOP | UI_BLOCK_NUMSELECT);
UI_block_direction_set(block, direction);
/* offset the mouse position, possibly based on earlier selection */
if ((block->flag & UI_BLOCK_POPUP_MEMORY) &&
(bt = ui_popup_menu_memory_get(block)))
2012-03-30 01:51:25 +00:00
{
/* position mouse on last clicked item, at 0.8*width of the
* button, so it doesn't overlap the text too much, also note
* the offset is negative because we are inverse moving the
* block to be under the mouse */
offset[0] = -(bt->rect.xmin + 0.8f * BLI_rctf_size_x(&bt->rect));
offset[1] = -(bt->rect.ymin + 0.5f * UI_UNIT_Y);
if (ui_but_is_editable(bt)) {
but_activate = bt;
}
}
else {
/* position mouse at 0.8*width of the button and below the tile
* on the first item */
2012-03-30 01:51:25 +00:00
offset[0] = 0;
for (bt = block->buttons.first; bt; bt = bt->next)
offset[0] = min_ii(offset[0], -(bt->rect.xmin + 0.8f * BLI_rctf_size_x(&bt->rect)));
offset[1] = 2.1 * UI_UNIT_Y;
for (bt = block->buttons.first; bt; bt = bt->next) {
if (ui_but_is_editable(bt)) {
but_activate = bt;
break;
}
}
}
/* in rare cases this is needed since moving the popup
* to be within the window bounds may move it away from the mouse,
* This ensures we set an item to be active. */
if (but_activate) {
ui_but_activate_over(C, handle->region, but_activate);
}
2012-03-30 01:51:25 +00:00
block->minbounds = minwidth;
UI_block_bounds_set_menu(block, 1, offset[0], offset[1]);
}
else {
/* for a header menu we set the direction automatic */
if (!pup->slideout && flip) {
2012-03-30 01:51:25 +00:00
ScrArea *sa = CTX_wm_area(C);
if (sa && sa->headertype == HEADERDOWN) {
ARegion *ar = CTX_wm_region(C);
if (ar && ar->regiontype == RGN_TYPE_HEADER) {
UI_block_direction_set(block, UI_DIR_UP);
UI_block_order_flip(block);
}
}
}
2012-03-30 01:51:25 +00:00
block->minbounds = minwidth;
UI_block_bounds_set_text(block, 3.0f * UI_UNIT_X);
}
/* if menu slides out of other menu, override direction */
if (pup->slideout)
UI_block_direction_set(block, UI_DIR_RIGHT);
return pup->block;
}
2015-05-05 03:13:47 +10:00
uiPopupBlockHandle *ui_popup_menu_create(
bContext *C, ARegion *butregion, uiBut *but,
uiMenuCreateFunc menu_func, void *arg)
{
2012-03-30 01:51:25 +00:00
wmWindow *window = CTX_wm_window(C);
uiStyle *style = UI_style_get_dpi();
uiPopupBlockHandle *handle;
uiPopupMenu *pup;
2012-03-30 01:51:25 +00:00
pup = MEM_callocN(sizeof(uiPopupMenu), __func__);
pup->block = UI_block_begin(C, NULL, __func__, UI_EMBOSS_PULLDOWN);
pup->block->flag |= UI_BLOCK_NUMSELECT; /* default menus to numselect */
pup->layout = UI_block_layout(pup->block, UI_LAYOUT_VERTICAL, UI_LAYOUT_MENU, 0, 0, 200, 0, MENU_PADDING, style);
pup->slideout = but ? ui_block_is_menu(but->block) : false;
2012-03-30 01:51:25 +00:00
pup->but = but;
uiLayoutSetOperatorContext(pup->layout, WM_OP_INVOKE_REGION_WIN);
UI: Layout Engine * Buttons are now created first, and after that the layout is computed. This means the layout engine now works at button level, and makes it easier to write templates. Otherwise you had to store all info and create the buttons later. * Added interface_templates.c as a separate file to put templates in. These can contain regular buttons, and can be put in a Free layout, which means you can specify manual coordinates, but still get nested correct inside other layouts. * API was changed to allow better nesting. Previously items were added in the last added layout specifier, i.e. one level up in the layout hierarchy. This doesn't work well in always, so now when creating things like rows or columns it always returns a layout which you have to add the items in. All py scripts were updated to follow this. * Computing the layout now goes in two passes, first estimating the required width/height of all nested layouts, and then in the second pass using the results of that to decide on the actual locations. * Enum and array buttons now follow the direction of the layout, i.e. they are vertical or horizontal depending if they are in a column or row. * Color properties now get a color picker, and only get the additional RGB sliders with Expand=True. * File/directory string properties now get a button next to them for opening the file browse, though this is not implemented yet. * Layout items can now be aligned, set align=True when creating a column, row, etc. * Buttons now get a minimum width of one icon (avoids squashing icon buttons). * Moved some more space variables into Style.
2009-05-15 11:19:59 +00:00
if (!but) {
/* no button to start from, means we are a popup */
2012-03-30 01:51:25 +00:00
pup->mx = window->eventstate->x;
pup->my = window->eventstate->y;
pup->popup = true;
pup->block->flag |= UI_BLOCK_NO_FLIP;
}
/* some enums reversing is strange, currently we have no good way to
* reverse some enum's but not others, so reverse all so the first menu
* items are always close to the mouse cursor */
else {
#if 0
/* if this is an rna button then we can assume its an enum
* flipping enums is generally not good since the order can be
* important [#28786] */
if (but->rnaprop && RNA_property_type(but->rnaprop) == PROP_ENUM) {
pup->block->flag |= UI_BLOCK_NO_FLIP;
}
#endif
if (but->context)
uiLayoutContextCopy(pup->layout, but->context);
}
/* menu is created from a callback */
pup->menu_func = menu_func;
pup->menu_arg = arg;
2012-03-30 01:51:25 +00:00
handle = ui_popup_block_create(C, butregion, but, NULL, ui_block_func_POPUP, pup);
if (!but) {
handle->popup = true;
UI_popup_handlers_add(C, &window->modalhandlers, handle, 0);
WM_event_add_mousemove(C);
}
MEM_freeN(pup);
return handle;
}
/******************** Popup Menu API with begin and end ***********************/
/* only return handler, and set optional title */
uiPopupMenu *UI_popup_menu_begin(bContext *C, const char *title, int icon)
{
uiStyle *style = UI_style_get_dpi();
2012-03-30 01:51:25 +00:00
uiPopupMenu *pup = MEM_callocN(sizeof(uiPopupMenu), "popup menu");
UI: Layout Engine * Buttons are now created first, and after that the layout is computed. This means the layout engine now works at button level, and makes it easier to write templates. Otherwise you had to store all info and create the buttons later. * Added interface_templates.c as a separate file to put templates in. These can contain regular buttons, and can be put in a Free layout, which means you can specify manual coordinates, but still get nested correct inside other layouts. * API was changed to allow better nesting. Previously items were added in the last added layout specifier, i.e. one level up in the layout hierarchy. This doesn't work well in always, so now when creating things like rows or columns it always returns a layout which you have to add the items in. All py scripts were updated to follow this. * Computing the layout now goes in two passes, first estimating the required width/height of all nested layouts, and then in the second pass using the results of that to decide on the actual locations. * Enum and array buttons now follow the direction of the layout, i.e. they are vertical or horizontal depending if they are in a column or row. * Color properties now get a color picker, and only get the additional RGB sliders with Expand=True. * File/directory string properties now get a button next to them for opening the file browse, though this is not implemented yet. * Layout items can now be aligned, set align=True when creating a column, row, etc. * Buttons now get a minimum width of one icon (avoids squashing icon buttons). * Moved some more space variables into Style.
2009-05-15 11:19:59 +00:00
uiBut *but;
pup->block = UI_block_begin(C, NULL, __func__, UI_EMBOSS_PULLDOWN);
pup->block->flag |= UI_BLOCK_POPUP_MEMORY | UI_BLOCK_IS_FLIP;
2012-03-30 01:51:25 +00:00
pup->block->puphash = ui_popup_menu_hash(title);
pup->layout = UI_block_layout(pup->block, UI_LAYOUT_VERTICAL, UI_LAYOUT_MENU, 0, 0, 200, 0, MENU_PADDING, style);
/* note, this intentionally differs from the menu & submenu default because many operators
* use popups like this to select one of their options - where having invoke doesn't make sense */
uiLayoutSetOperatorContext(pup->layout, WM_OP_EXEC_REGION_WIN);
UI: Layout Engine * Buttons are now created first, and after that the layout is computed. This means the layout engine now works at button level, and makes it easier to write templates. Otherwise you had to store all info and create the buttons later. * Added interface_templates.c as a separate file to put templates in. These can contain regular buttons, and can be put in a Free layout, which means you can specify manual coordinates, but still get nested correct inside other layouts. * API was changed to allow better nesting. Previously items were added in the last added layout specifier, i.e. one level up in the layout hierarchy. This doesn't work well in always, so now when creating things like rows or columns it always returns a layout which you have to add the items in. All py scripts were updated to follow this. * Computing the layout now goes in two passes, first estimating the required width/height of all nested layouts, and then in the second pass using the results of that to decide on the actual locations. * Enum and array buttons now follow the direction of the layout, i.e. they are vertical or horizontal depending if they are in a column or row. * Color properties now get a color picker, and only get the additional RGB sliders with Expand=True. * File/directory string properties now get a button next to them for opening the file browse, though this is not implemented yet. * Layout items can now be aligned, set align=True when creating a column, row, etc. * Buttons now get a minimum width of one icon (avoids squashing icon buttons). * Moved some more space variables into Style.
2009-05-15 11:19:59 +00:00
/* create in advance so we can let buttons point to retval already */
2012-03-30 01:51:25 +00:00
pup->block->handle = MEM_callocN(sizeof(uiPopupBlockHandle), "uiPopupBlockHandle");
UI: Layout Engine * Buttons are now created first, and after that the layout is computed. This means the layout engine now works at button level, and makes it easier to write templates. Otherwise you had to store all info and create the buttons later. * Added interface_templates.c as a separate file to put templates in. These can contain regular buttons, and can be put in a Free layout, which means you can specify manual coordinates, but still get nested correct inside other layouts. * API was changed to allow better nesting. Previously items were added in the last added layout specifier, i.e. one level up in the layout hierarchy. This doesn't work well in always, so now when creating things like rows or columns it always returns a layout which you have to add the items in. All py scripts were updated to follow this. * Computing the layout now goes in two passes, first estimating the required width/height of all nested layouts, and then in the second pass using the results of that to decide on the actual locations. * Enum and array buttons now follow the direction of the layout, i.e. they are vertical or horizontal depending if they are in a column or row. * Color properties now get a color picker, and only get the additional RGB sliders with Expand=True. * File/directory string properties now get a button next to them for opening the file browse, though this is not implemented yet. * Layout items can now be aligned, set align=True when creating a column, row, etc. * Buttons now get a minimum width of one icon (avoids squashing icon buttons). * Moved some more space variables into Style.
2009-05-15 11:19:59 +00:00
/* create title button */
if (title[0]) {
UI: Layout Engine * Buttons are now created first, and after that the layout is computed. This means the layout engine now works at button level, and makes it easier to write templates. Otherwise you had to store all info and create the buttons later. * Added interface_templates.c as a separate file to put templates in. These can contain regular buttons, and can be put in a Free layout, which means you can specify manual coordinates, but still get nested correct inside other layouts. * API was changed to allow better nesting. Previously items were added in the last added layout specifier, i.e. one level up in the layout hierarchy. This doesn't work well in always, so now when creating things like rows or columns it always returns a layout which you have to add the items in. All py scripts were updated to follow this. * Computing the layout now goes in two passes, first estimating the required width/height of all nested layouts, and then in the second pass using the results of that to decide on the actual locations. * Enum and array buttons now follow the direction of the layout, i.e. they are vertical or horizontal depending if they are in a column or row. * Color properties now get a color picker, and only get the additional RGB sliders with Expand=True. * File/directory string properties now get a button next to them for opening the file browse, though this is not implemented yet. * Layout items can now be aligned, set align=True when creating a column, row, etc. * Buttons now get a minimum width of one icon (avoids squashing icon buttons). * Moved some more space variables into Style.
2009-05-15 11:19:59 +00:00
char titlestr[256];
if (icon) {
BLI_snprintf(titlestr, sizeof(titlestr), " %s", title);
uiDefIconTextBut(pup->block, UI_BTYPE_LABEL, 0, icon, titlestr, 0, 0, 200, UI_UNIT_Y, NULL, 0.0, 0.0, 0, 0, "");
UI: Layout Engine * Buttons are now created first, and after that the layout is computed. This means the layout engine now works at button level, and makes it easier to write templates. Otherwise you had to store all info and create the buttons later. * Added interface_templates.c as a separate file to put templates in. These can contain regular buttons, and can be put in a Free layout, which means you can specify manual coordinates, but still get nested correct inside other layouts. * API was changed to allow better nesting. Previously items were added in the last added layout specifier, i.e. one level up in the layout hierarchy. This doesn't work well in always, so now when creating things like rows or columns it always returns a layout which you have to add the items in. All py scripts were updated to follow this. * Computing the layout now goes in two passes, first estimating the required width/height of all nested layouts, and then in the second pass using the results of that to decide on the actual locations. * Enum and array buttons now follow the direction of the layout, i.e. they are vertical or horizontal depending if they are in a column or row. * Color properties now get a color picker, and only get the additional RGB sliders with Expand=True. * File/directory string properties now get a button next to them for opening the file browse, though this is not implemented yet. * Layout items can now be aligned, set align=True when creating a column, row, etc. * Buttons now get a minimum width of one icon (avoids squashing icon buttons). * Moved some more space variables into Style.
2009-05-15 11:19:59 +00:00
}
else {
but = uiDefBut(pup->block, UI_BTYPE_LABEL, 0, title, 0, 0, 200, UI_UNIT_Y, NULL, 0.0, 0.0, 0, 0, "");
but->drawflag = UI_BUT_TEXT_LEFT;
UI: Layout Engine * Buttons are now created first, and after that the layout is computed. This means the layout engine now works at button level, and makes it easier to write templates. Otherwise you had to store all info and create the buttons later. * Added interface_templates.c as a separate file to put templates in. These can contain regular buttons, and can be put in a Free layout, which means you can specify manual coordinates, but still get nested correct inside other layouts. * API was changed to allow better nesting. Previously items were added in the last added layout specifier, i.e. one level up in the layout hierarchy. This doesn't work well in always, so now when creating things like rows or columns it always returns a layout which you have to add the items in. All py scripts were updated to follow this. * Computing the layout now goes in two passes, first estimating the required width/height of all nested layouts, and then in the second pass using the results of that to decide on the actual locations. * Enum and array buttons now follow the direction of the layout, i.e. they are vertical or horizontal depending if they are in a column or row. * Color properties now get a color picker, and only get the additional RGB sliders with Expand=True. * File/directory string properties now get a button next to them for opening the file browse, though this is not implemented yet. * Layout items can now be aligned, set align=True when creating a column, row, etc. * Buttons now get a minimum width of one icon (avoids squashing icon buttons). * Moved some more space variables into Style.
2009-05-15 11:19:59 +00:00
}
uiItemS(pup->layout);
UI: Layout Engine * Buttons are now created first, and after that the layout is computed. This means the layout engine now works at button level, and makes it easier to write templates. Otherwise you had to store all info and create the buttons later. * Added interface_templates.c as a separate file to put templates in. These can contain regular buttons, and can be put in a Free layout, which means you can specify manual coordinates, but still get nested correct inside other layouts. * API was changed to allow better nesting. Previously items were added in the last added layout specifier, i.e. one level up in the layout hierarchy. This doesn't work well in always, so now when creating things like rows or columns it always returns a layout which you have to add the items in. All py scripts were updated to follow this. * Computing the layout now goes in two passes, first estimating the required width/height of all nested layouts, and then in the second pass using the results of that to decide on the actual locations. * Enum and array buttons now follow the direction of the layout, i.e. they are vertical or horizontal depending if they are in a column or row. * Color properties now get a color picker, and only get the additional RGB sliders with Expand=True. * File/directory string properties now get a button next to them for opening the file browse, though this is not implemented yet. * Layout items can now be aligned, set align=True when creating a column, row, etc. * Buttons now get a minimum width of one icon (avoids squashing icon buttons). * Moved some more space variables into Style.
2009-05-15 11:19:59 +00:00
}
return pup;
}
/* set the whole structure to work */
void UI_popup_menu_end(bContext *C, uiPopupMenu *pup)
{
2012-03-30 01:51:25 +00:00
wmWindow *window = CTX_wm_window(C);
uiPopupBlockHandle *menu;
pup->popup = true;
2012-03-30 01:51:25 +00:00
pup->mx = window->eventstate->x;
pup->my = window->eventstate->y;
2012-03-30 01:51:25 +00:00
menu = ui_popup_block_create(C, NULL, NULL, NULL, ui_block_func_POPUP, pup);
menu->popup = true;
UI_popup_handlers_add(C, &window->modalhandlers, menu, 0);
WM_event_add_mousemove(C);
MEM_freeN(pup);
}
uiLayout *UI_popup_menu_layout(uiPopupMenu *pup)
{
return pup->layout;
}
/*************************** Pie Menus ***************************************/
static uiBlock *ui_block_func_PIE(bContext *UNUSED(C), uiPopupBlockHandle *handle, void *arg_pie)
{
uiBlock *block;
uiPieMenu *pie = arg_pie;
int minwidth, width, height;
minwidth = 50;
block = pie->block_radial;
/* in some cases we create the block before the region,
* so we set it delayed here if necessary */
if (BLI_findindex(&handle->region->uiblocks, block) == -1)
UI_block_region_set(block, handle->region);
UI_block_layout_resolve(block, &width, &height);
2014-11-15 14:11:51 +01:00
UI_block_flag_enable(block, UI_BLOCK_LOOP | UI_BLOCK_NUMSELECT);
block->minbounds = minwidth;
block->bounds = 1;
block->mx = 0;
block->my = 0;
block->bounds_type = UI_BLOCK_BOUNDS_PIE_CENTER;
block->pie_data.pie_center_spawned[0] = pie->mx;
block->pie_data.pie_center_spawned[1] = pie->my;
return pie->block_radial;
}
static float ui_pie_menu_title_width(const char *name, int icon)
{
const uiFontStyle *fstyle = UI_FSTYLE_WIDGET;
return (UI_fontstyle_string_width(fstyle, name) +
(UI_UNIT_X * (1.50f + (icon ? 0.25f : 0.0f))));
}
uiPieMenu *UI_pie_menu_begin(struct bContext *C, const char *title, int icon, const wmEvent *event)
{
uiStyle *style;
uiPieMenu *pie;
short event_type;
wmWindow *win = CTX_wm_window(C);
style = UI_style_get_dpi();
pie = MEM_callocN(sizeof(uiPopupMenu), "pie menu");
pie->block_radial = UI_block_begin(C, NULL, __func__, UI_EMBOSS);
/* may be useful later to allow spawning pies
* from old positions */
/* pie->block_radial->flag |= UI_BLOCK_POPUP_MEMORY; */
pie->block_radial->puphash = ui_popup_menu_hash(title);
pie->block_radial->flag |= UI_BLOCK_RADIAL;
/* if pie is spawned by a left click, it is always assumed to be click style */
if (event->type == LEFTMOUSE) {
pie->block_radial->pie_data.flags |= UI_PIE_CLICK_STYLE;
pie->block_radial->pie_data.event = EVENT_NONE;
win->lock_pie_event = EVENT_NONE;
}
else {
if (win->last_pie_event != EVENT_NONE) {
/* original pie key has been released, so don't propagate the event */
if (win->lock_pie_event == EVENT_NONE) {
event_type = EVENT_NONE;
pie->block_radial->pie_data.flags |= UI_PIE_CLICK_STYLE;
}
else
event_type = win->last_pie_event;
}
else {
event_type = event->type;
}
pie->block_radial->pie_data.event = event_type;
win->lock_pie_event = event_type;
}
pie->layout = UI_block_layout(pie->block_radial, UI_LAYOUT_VERTICAL, UI_LAYOUT_PIEMENU, 0, 0, 200, 0, 0, style);
pie->mx = event->x;
pie->my = event->y;
/* create title button */
if (title[0]) {
2014-08-13 14:08:26 +02:00
uiBut *but;
char titlestr[256];
int w;
if (icon) {
BLI_snprintf(titlestr, sizeof(titlestr), " %s", title);
w = ui_pie_menu_title_width(titlestr, icon);
but = uiDefIconTextBut(pie->block_radial, UI_BTYPE_LABEL, 0, icon, titlestr, 0, 0, w, UI_UNIT_Y, NULL, 0.0, 0.0, 0, 0, "");
}
else {
w = ui_pie_menu_title_width(title, 0);
but = uiDefBut(pie->block_radial, UI_BTYPE_LABEL, 0, title, 0, 0, w, UI_UNIT_Y, NULL, 0.0, 0.0, 0, 0, "");
}
2014-08-13 14:08:26 +02:00
/* do not align left */
but->drawflag &= ~UI_BUT_TEXT_LEFT;
}
return pie;
}
void UI_pie_menu_end(bContext *C, uiPieMenu *pie)
{
wmWindow *window = CTX_wm_window(C);
uiPopupBlockHandle *menu;
menu = ui_popup_block_create(C, NULL, NULL, NULL, ui_block_func_PIE, pie);
menu->popup = true;
menu->towardstime = PIL_check_seconds_timer();
UI_popup_handlers_add(
C, &window->modalhandlers,
menu, WM_HANDLER_ACCEPT_DBL_CLICK);
WM_event_add_mousemove(C);
MEM_freeN(pie);
}
uiLayout *UI_pie_menu_layout(uiPieMenu *pie)
{
return pie->layout;
}
int UI_pie_menu_invoke(struct bContext *C, const char *idname, const wmEvent *event)
{
uiPieMenu *pie;
uiLayout *layout;
Menu menu;
MenuType *mt = WM_menutype_find(idname, true);
if (mt == NULL) {
printf("%s: named menu \"%s\" not found\n", __func__, idname);
return OPERATOR_CANCELLED;
}
if (mt->poll && mt->poll(C, mt) == 0)
return OPERATOR_CANCELLED;
pie = UI_pie_menu_begin(C, IFACE_(mt->label), ICON_NONE, event);
layout = UI_pie_menu_layout(pie);
menu.layout = layout;
menu.type = mt;
if (G.debug & G_DEBUG_WM) {
printf("%s: opening menu \"%s\"\n", __func__, idname);
}
mt->draw(C, &menu);
UI_pie_menu_end(C, pie);
return OPERATOR_INTERFACE;
}
2015-05-05 03:13:47 +10:00
int UI_pie_menu_invoke_from_operator_enum(
struct bContext *C, const char *title, const char *opname,
const char *propname, const wmEvent *event)
{
uiPieMenu *pie;
uiLayout *layout;
pie = UI_pie_menu_begin(C, IFACE_(title), ICON_NONE, event);
layout = UI_pie_menu_layout(pie);
layout = uiLayoutRadial(layout);
uiItemsEnumO(layout, opname, propname);
UI_pie_menu_end(C, pie);
return OPERATOR_INTERFACE;
}
2015-05-05 03:13:47 +10:00
int UI_pie_menu_invoke_from_rna_enum(
struct bContext *C, const char *title, const char *path,
const wmEvent *event)
{
PointerRNA ctx_ptr;
PointerRNA r_ptr;
PropertyRNA *r_prop;
uiPieMenu *pie;
uiLayout *layout;
RNA_pointer_create(NULL, &RNA_Context, C, &ctx_ptr);
if (!RNA_path_resolve(&ctx_ptr, path, &r_ptr, &r_prop)) {
return OPERATOR_CANCELLED;
}
/* invalid property, only accept enums */
if (RNA_property_type(r_prop) != PROP_ENUM) {
BLI_assert(0);
return OPERATOR_CANCELLED;
}
pie = UI_pie_menu_begin(C, IFACE_(title), ICON_NONE, event);
layout = UI_pie_menu_layout(pie);
layout = uiLayoutRadial(layout);
uiItemFullR(layout, &r_ptr, r_prop, RNA_NO_INDEX, 0, UI_ITEM_R_EXPAND, NULL, 0);
UI_pie_menu_end(C, pie);
return OPERATOR_INTERFACE;
}
/*************************** Standard Popup Menus ****************************/
void UI_popup_menu_reports(bContext *C, ReportList *reports)
{
Report *report;
uiPopupMenu *pup = NULL;
uiLayout *layout;
if (!CTX_wm_window(C))
return;
2012-03-30 01:51:25 +00:00
for (report = reports->list.first; report; report = report->next) {
int icon;
const char *msg, *msg_next;
2012-10-14 13:08:19 +00:00
if (report->type < reports->printlevel) {
continue;
2012-10-14 13:08:19 +00:00
}
if (pup == NULL) {
char title[UI_MAX_DRAW_STR];
BLI_snprintf(title, sizeof(title), "%s: %s", IFACE_("Report"), report->typestr);
pup = UI_popup_menu_begin(C, title, ICON_NONE);
layout = UI_popup_menu_layout(pup);
2012-10-14 13:08:19 +00:00
}
else {
uiItemS(layout);
}
/* split each newline into a label */
msg = report->message;
icon = UI_icon_from_report_type(report->type);
do {
char buf[UI_MAX_DRAW_STR];
msg_next = strchr(msg, '\n');
if (msg_next) {
msg_next++;
BLI_strncpy(buf, msg, MIN2(sizeof(buf), msg_next - msg));
msg = buf;
}
uiItemL(layout, msg, icon);
icon = ICON_NONE;
} while ((msg = msg_next) && *msg);
}
if (pup) {
UI_popup_menu_end(C, pup);
}
}
int UI_popup_menu_invoke(bContext *C, const char *idname, ReportList *reports)
{
uiPopupMenu *pup;
uiLayout *layout;
Menu menu;
MenuType *mt = WM_menutype_find(idname, true);
2012-03-30 01:51:25 +00:00
if (mt == NULL) {
2014-02-22 13:49:40 +01:00
BKE_reportf(reports, RPT_ERROR, "Menu \"%s\" not found", idname);
return OPERATOR_CANCELLED;
}
2012-03-30 01:51:25 +00:00
if (mt->poll && mt->poll(C, mt) == 0)
return OPERATOR_CANCELLED;
pup = UI_popup_menu_begin(C, IFACE_(mt->label), ICON_NONE);
layout = UI_popup_menu_layout(pup);
2012-03-30 01:51:25 +00:00
menu.layout = layout;
menu.type = mt;
if (G.debug & G_DEBUG_WM) {
printf("%s: opening menu \"%s\"\n", __func__, idname);
}
mt->draw(C, &menu);
UI_popup_menu_end(C, pup);
return OPERATOR_INTERFACE;
}
/*************************** Popup Block API **************************/
void UI_popup_block_invoke_ex(bContext *C, uiBlockCreateFunc func, void *arg, const char *opname, int opcontext)
{
2012-03-30 01:51:25 +00:00
wmWindow *window = CTX_wm_window(C);
uiPopupBlockHandle *handle;
2012-03-30 01:51:25 +00:00
handle = ui_popup_block_create(C, NULL, NULL, func, NULL, arg);
handle->popup = true;
2012-03-30 01:51:25 +00:00
handle->optype = (opname) ? WM_operatortype_find(opname, 0) : NULL;
handle->opcontext = opcontext;
UI_popup_handlers_add(C, &window->modalhandlers, handle, 0);
WM_event_add_mousemove(C);
}
void UI_popup_block_invoke(bContext *C, uiBlockCreateFunc func, void *arg)
{
UI_popup_block_invoke_ex(C, func, arg, NULL, WM_OP_INVOKE_DEFAULT);
}
void UI_popup_block_ex(bContext *C, uiBlockCreateFunc func, uiBlockHandleFunc popup_func, uiBlockCancelFunc cancel_func, void *arg)
2011-06-24 03:30:50 +00:00
{
2012-03-30 01:51:25 +00:00
wmWindow *window = CTX_wm_window(C);
2011-06-24 03:30:50 +00:00
uiPopupBlockHandle *handle;
2012-03-30 01:51:25 +00:00
handle = ui_popup_block_create(C, NULL, NULL, func, NULL, arg);
handle->popup = true;
2012-03-30 01:51:25 +00:00
handle->retvalue = 1;
2011-06-24 03:30:50 +00:00
2012-03-30 01:51:25 +00:00
handle->popup_arg = arg;
handle->popup_func = popup_func;
handle->cancel_func = cancel_func;
2012-05-27 19:40:36 +00:00
// handle->opcontext = opcontext;
2011-06-24 03:30:50 +00:00
UI_popup_handlers_add(C, &window->modalhandlers, handle, 0);
2011-06-24 03:30:50 +00:00
WM_event_add_mousemove(C);
}
#if 0 /* UNUSED */
void uiPupBlockOperator(bContext *C, uiBlockCreateFunc func, wmOperator *op, int opcontext)
{
2012-03-30 01:51:25 +00:00
wmWindow *window = CTX_wm_window(C);
uiPopupBlockHandle *handle;
2012-03-30 01:51:25 +00:00
handle = ui_popup_block_create(C, NULL, NULL, func, NULL, op);
handle->popup = 1;
handle->retvalue = 1;
2012-03-30 01:51:25 +00:00
handle->popup_arg = op;
handle->popup_func = operator_cb;
handle->cancel_func = confirm_cancel_operator;
handle->opcontext = opcontext;
UI_popup_handlers_add(C, &window->modalhandlers, handle, 0);
WM_event_add_mousemove(C);
}
2011-06-24 03:30:50 +00:00
#endif
void UI_popup_block_close(bContext *C, wmWindow *win, uiBlock *block)
{
/* if loading new .blend while popup is open, window will be NULL */
if (block->handle) {
if (win) {
UI_popup_handlers_remove(&win->modalhandlers, block->handle);
ui_popup_block_free(C, block->handle);
}
}
}
ColorPicker *ui_block_colorpicker_create(struct uiBlock *block)
{
ColorPicker *cpicker = MEM_callocN(sizeof(ColorPicker), "color_picker");
BLI_addhead(&block->color_pickers.list, cpicker);
return cpicker;
}
void ui_rgb_to_color_picker_compat_v(const float rgb[3], float r_cp[3])
{
switch (U.color_picker_type) {
case USER_CP_CIRCLE_HSL:
rgb_to_hsl_compat_v(rgb, r_cp);
break;
default:
rgb_to_hsv_compat_v(rgb, r_cp);
break;
}
}
void ui_rgb_to_color_picker_v(const float rgb[3], float r_cp[3])
{
switch (U.color_picker_type) {
case USER_CP_CIRCLE_HSL:
rgb_to_hsl_v(rgb, r_cp);
break;
default:
rgb_to_hsv_v(rgb, r_cp);
break;
}
}
void ui_color_picker_to_rgb_v(const float r_cp[3], float rgb[3])
{
switch (U.color_picker_type) {
case USER_CP_CIRCLE_HSL:
hsl_to_rgb_v(r_cp, rgb);
break;
default:
hsv_to_rgb_v(r_cp, rgb);
break;
}
}
void ui_color_picker_to_rgb(float r_cp0, float r_cp1, float r_cp2, float *r, float *g, float *b)
{
switch (U.color_picker_type) {
case USER_CP_CIRCLE_HSL:
hsl_to_rgb(r_cp0, r_cp1, r_cp2, r, g, b);
break;
default:
hsv_to_rgb(r_cp0, r_cp1, r_cp2, r, g, b);
break;
}
}