This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/editors/include/UI_view2d.h

310 lines
13 KiB
C++
Raw Normal View History

2011-02-21 07:25:24 +00:00
/*
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
2010-02-12 13:34:04 +00:00
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
*
* The Original Code is Copyright (C) 2008 Blender Foundation.
* All rights reserved.
* Generic 2d view with should allow drawing grids,
* panning, zooming, scrolling, ..
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
*/
/** \file
* \ingroup editorui
2011-02-21 07:25:24 +00:00
*/
#ifndef __UI_VIEW2D_H__
#define __UI_VIEW2D_H__
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
#include "BLI_compiler_attrs.h"
/* ------------------------------------------ */
/* Settings and Defines: */
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
/* ---- General Defines ---- */
/* generic value to use when coordinate lies out of view when converting */
#define V2D_IS_CLIPPED 12000
/* Common View2D view types
* NOTE: only define a type here if it completely sets all (+/- a few) of the relevant flags
2018-11-14 12:53:15 +11:00
* and settings for a View2D region, and that set of settings is used in more
* than one specific place
*/
enum eView2D_CommonViewTypes {
/* custom view type (region has defined all necessary flags already) */
V2D_COMMONVIEW_CUSTOM = -1,
/* standard (only use this when setting up a new view, as a sensible base for most settings) */
V2D_COMMONVIEW_STANDARD,
/* listview (i.e. Outliner) */
V2D_COMMONVIEW_LIST,
/* stackview (this is basically a list where new items are added at the top) */
V2D_COMMONVIEW_STACK,
/* headers (this is basically the same as listview, but no y-panning) */
V2D_COMMONVIEW_HEADER,
/* ui region containing panels */
V2D_COMMONVIEW_PANELS_UI,
};
/* ---- Defines for Scroller/Grid Arguments ----- */
/* 'dummy' argument to pass when argument is irrelevant */
#define V2D_ARG_DUMMY -1
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
/* Grid units */
enum eView2D_Units {
/* for drawing time */
V2D_UNIT_SECONDS = 0,
V2D_UNIT_FRAMES,
V2D_UNIT_FRAMESCALE,
/* for drawing values */
V2D_UNIT_VALUES,
};
/* clamping of grid values to whole numbers */
enum eView2D_Clamp {
V2D_GRID_NOCLAMP = 0,
V2D_GRID_CLAMP,
};
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
/* flags for grid-lines to draw */
enum eView2D_Gridlines {
V2D_HORIZONTAL_LINES = (1 << 0),
V2D_VERTICAL_LINES = (1 << 1),
V2D_HORIZONTAL_AXIS = (1 << 2),
V2D_VERTICAL_AXIS = (1 << 3),
V2D_HORIZONTAL_FINELINES = (1 << 4),
V2D_GRIDLINES_MAJOR = (V2D_VERTICAL_LINES | V2D_VERTICAL_AXIS | V2D_HORIZONTAL_LINES |
V2D_HORIZONTAL_AXIS),
V2D_GRIDLINES_ALL = (V2D_GRIDLINES_MAJOR | V2D_HORIZONTAL_FINELINES),
};
/* ------ Defines for Scrollers ----- */
/* scroller area */
#define V2D_SCROLL_HEIGHT (0.45f * U.widget_unit)
#define V2D_SCROLL_WIDTH (0.45f * U.widget_unit)
/* For scrollers with scale markings (text written onto them) */
#define V2D_SCROLL_HEIGHT_TEXT (0.79f * U.widget_unit)
#define V2D_SCROLL_WIDTH_TEXT (0.79f * U.widget_unit)
/* scroller 'handles' hotspot radius for mouse */
#define V2D_SCROLLER_HANDLE_SIZE (0.6f * U.widget_unit)
/* ------ Define for UI_view2d_sync ----- */
/* means copy it from another v2d */
#define V2D_LOCK_SET 0
/* means copy it to the other v2ds */
#define V2D_LOCK_COPY 1
/* ------------------------------------------ */
2018-11-14 12:53:15 +11:00
/* Macros: */
/* test if mouse in a scrollbar (assume that scroller availability has been tested) */
#define IN_2D_VERT_SCROLL(v2d, co) (BLI_rcti_isect_pt_v(&v2d->vert, co))
#define IN_2D_HORIZ_SCROLL(v2d, co) (BLI_rcti_isect_pt_v(&v2d->hor, co))
#define IN_2D_VERT_SCROLL_RECT(v2d, rct) (BLI_rcti_isect(&v2d->vert, rct, NULL))
#define IN_2D_HORIZ_SCROLL_RECT(v2d, rct) (BLI_rcti_isect(&v2d->hor, rct, NULL))
/* ------------------------------------------ */
/* Type definitions: */
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
struct View2D;
struct View2DGrid;
struct View2DScrollers;
struct ARegion;
struct Scene;
struct ScrArea;
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
struct bContext;
struct bScreen;
struct rctf;
struct wmKeyConfig;
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
typedef struct View2DGrid View2DGrid;
typedef struct View2DScrollers View2DScrollers;
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
/* ----------------------------------------- */
/* Prototypes: */
/* refresh and validation (of view rects) */
void UI_view2d_region_reinit(struct View2D *v2d, short type, int winx, int winy);
void UI_view2d_curRect_validate(struct View2D *v2d);
void UI_view2d_curRect_reset(struct View2D *v2d);
void UI_view2d_sync(struct bScreen *screen, struct ScrArea *sa, struct View2D *v2dcur, int flag);
void UI_view2d_totRect_set(struct View2D *v2d, int width, int height);
void UI_view2d_totRect_set_resize(struct View2D *v2d, int width, int height, bool resize);
2018-10-22 16:41:18 +11:00
void UI_view2d_mask_from_win(const struct View2D *v2d, struct rcti *r_mask);
/* per tab offsets, returns 1 if tab changed */
bool UI_view2d_tab_set(struct View2D *v2d, int tab);
void UI_view2d_zoom_cache_reset(void);
/* view matrix operations */
void UI_view2d_view_ortho(struct View2D *v2d);
2014-10-28 18:39:43 +01:00
void UI_view2d_view_orthoSpecial(struct ARegion *ar, struct View2D *v2d, const bool xaxis);
void UI_view2d_view_restore(const struct bContext *C);
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
/* grid drawing */
View2DGrid *UI_view2d_grid_calc(struct Scene *scene,
struct View2D *v2d,
short xunits,
short xclamp,
short yunits,
short yclamp,
int winx,
int winy);
void UI_view2d_grid_draw(struct View2D *v2d, View2DGrid *grid, int flag);
void UI_view2d_constant_grid_draw(struct View2D *v2d, float step);
void UI_view2d_multi_grid_draw(
struct View2D *v2d, int colorid, float step, int level_size, int totlevels);
void UI_view2d_grid_size(View2DGrid *grid, float *r_dx, float *r_dy);
void UI_view2d_grid_draw_numbers_horizontal(const struct Scene *scene,
const struct View2D *v2d,
const View2DGrid *grid,
const struct rcti *rect,
int unit,
bool whole_numbers_only);
void UI_view2d_grid_draw_numbers_vertical(const struct Scene *scene,
const struct View2D *v2d,
const View2DGrid *grid,
const struct rcti *rect,
int unit,
float text_offset);
void UI_view2d_grid_free(View2DGrid *grid);
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
/* scrollbar drawing */
View2DScrollers *UI_view2d_scrollers_calc(const struct bContext *C,
struct View2D *v2d,
const struct rcti *mask_custom,
short xunits,
short xclamp,
short yunits,
short yclamp);
void UI_view2d_scrollers_draw(const struct bContext *C,
struct View2D *v2d,
View2DScrollers *scrollers);
void UI_view2d_scrollers_free(View2DScrollers *scrollers);
/* list view tools */
void UI_view2d_listview_cell_to_view(struct View2D *v2d,
float columnwidth,
float rowheight,
float startx,
float starty,
int column,
int row,
struct rctf *rect);
void UI_view2d_listview_view_to_cell(struct View2D *v2d,
float columnwidth,
float rowheight,
float startx,
float starty,
float viewx,
float viewy,
int *column,
int *row);
void UI_view2d_listview_visible_cells(struct View2D *v2d,
float columnwidth,
float rowheight,
float startx,
float starty,
int *column_min,
int *column_max,
int *row_min,
int *row_max);
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
/* coordinate conversion */
2018-11-13 13:28:43 +11:00
float UI_view2d_region_to_view_x(const struct View2D *v2d, float x);
float UI_view2d_region_to_view_y(const struct View2D *v2d, float y);
void UI_view2d_region_to_view(
const struct View2D *v2d, float x, float y, float *r_view_x, float *r_view_y) ATTR_NONNULL();
void UI_view2d_region_to_view_rctf(const struct View2D *v2d,
const struct rctf *rect_src,
struct rctf *rect_dst) ATTR_NONNULL();
2018-11-13 13:28:43 +11:00
float UI_view2d_view_to_region_x(const struct View2D *v2d, float x);
float UI_view2d_view_to_region_y(const struct View2D *v2d, float y);
bool UI_view2d_view_to_region_clip(
const struct View2D *v2d, float x, float y, int *r_region_x, int *r_region_y) ATTR_NONNULL();
void UI_view2d_view_to_region(
struct View2D *v2d, float x, float y, int *r_region_x, int *r_region_y) ATTR_NONNULL();
void UI_view2d_view_to_region_fl(
struct View2D *v2d, float x, float y, float *r_region_x, float *r_region_y) ATTR_NONNULL();
void UI_view2d_view_to_region_m4(struct View2D *v2d, float matrix[4][4]) ATTR_NONNULL();
void UI_view2d_view_to_region_rcti(struct View2D *v2d,
const struct rctf *rect_src,
struct rcti *rect_dst) ATTR_NONNULL();
bool UI_view2d_view_to_region_rcti_clip(struct View2D *v2d,
const struct rctf *rect_src,
struct rcti *rect_dst) ATTR_NONNULL();
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
/* utilities */
struct View2D *UI_view2d_fromcontext(const struct bContext *C);
struct View2D *UI_view2d_fromcontext_rwin(const struct bContext *C);
2019-03-25 12:19:55 +11:00
void UI_view2d_scale_get(struct View2D *v2d, float *r_x, float *r_y);
float UI_view2d_scale_get_x(const struct View2D *v2d);
float UI_view2d_scale_get_y(const struct View2D *v2d);
2019-03-25 12:19:55 +11:00
void UI_view2d_scale_get_inverse(struct View2D *v2d, float *r_x, float *r_y);
2019-03-25 12:19:55 +11:00
void UI_view2d_center_get(struct View2D *v2d, float *r_x, float *r_y);
2014-04-21 18:46:52 +10:00
void UI_view2d_center_set(struct View2D *v2d, float x, float y);
Merge of the PyNodes branch (aka "custom nodes") into trunk. PyNodes opens up the node system in Blender to scripters and adds a number of UI-level improvements. === Dynamic node type registration === Node types can now be added at runtime, using the RNA registration mechanism from python. This enables addons such as render engines to create a complete user interface with nodes. Examples of how such nodes can be defined can be found in my personal wiki docs atm [1] and as a script template in release/scripts/templates_py/custom_nodes.py [2]. === Node group improvements === Each node editor now has a tree history of edited node groups, which allows opening and editing nested node groups. The node editor also supports pinning now, so that different spaces can be used to edit different node groups simultaneously. For more ramblings and rationale see (really old) blog post on code.blender.org [3]. The interface of node groups has been overhauled. Sockets of a node group are no longer displayed in columns on either side, but instead special input/output nodes are used to mirror group sockets inside a node tree. This solves the problem of long node lines in groups and allows more adaptable node layout. Internal sockets can be exposed from a group by either connecting to the extension sockets in input/output nodes (shown as empty circle) or by adding sockets from the node property bar in the "Interface" panel. Further details such as the socket name can also be changed there. [1] http://wiki.blender.org/index.php/User:Phonybone/Python_Nodes [2] http://projects.blender.org/scm/viewvc.php/trunk/blender/release/scripts/templates_py/custom_nodes.py?view=markup&root=bf-blender [3] http://code.blender.org/index.php/2012/01/improving-node-group-interface-editing/
2013-03-18 16:34:57 +00:00
void UI_view2d_offset(struct View2D *v2d, float xfac, float yfac);
char UI_view2d_mouse_in_scrollers_ex(
const struct ARegion *ar, const struct View2D *v2d, int x, int y, int *r_scroll);
char UI_view2d_mouse_in_scrollers(const struct ARegion *ar,
const struct View2D *v2d,
int x,
int y);
char UI_view2d_rect_in_scrollers_ex(const struct ARegion *ar,
const struct View2D *v2d,
const struct rcti *rect,
int *r_scroll);
char UI_view2d_rect_in_scrollers(const struct ARegion *ar,
const struct View2D *v2d,
const struct rcti *rect);
/* cached text drawing in v2d, to allow pixel-aligned draw as post process */
void UI_view2d_text_cache_add(
struct View2D *v2d, float x, float y, const char *str, size_t str_len, const char col[4]);
void UI_view2d_text_cache_add_rectf(struct View2D *v2d,
const struct rctf *rect_view,
const char *str,
size_t str_len,
const char col[4]);
void UI_view2d_text_cache_draw(struct ARegion *ar);
/* operators */
2014-03-16 22:11:14 +11:00
void ED_operatortypes_view2d(void);
void ED_keymap_view2d(struct wmKeyConfig *keyconf);
void UI_view2d_smooth_view(struct bContext *C,
struct ARegion *ar,
const struct rctf *cur,
const int smooth_viewtx);
#define UI_MARKER_MARGIN_Y (42 * UI_DPI_FAC)
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
#endif /* __UI_VIEW2D_H__ */